
 

 

The echo chamber effect in Twitter: does 

community polarization increase? 

Siying Du and Steve Gregory 

Abstract A recent article criticized social media platforms for failing to “mobilize 

society into action” long enough to address any major global issue. This is at-

tributed to the simplistic design of current social media platforms, which encour-

age ideas to spread virally but do not support consensus formation which might 

lead to lasting social change. One reason for this could be the well known “echo 

chamber” phenomenon, whereby people tend to discuss issues only with other 

like-minded people. Social media has been blamed for encouraging the echo 

chamber effect and increasing polarization in society. For example, in Twitter, it is 

very common for users to be “followed” by others with similar views. Is this a re-

flection of real life or does Twitter actually increase polarization of views? This 

paper investigates this by comparing the Twitter follows network at two points in 

time and detecting communities in the network of reciprocated follows relation-

ships. We find that new edges are (at least 3-4 times) more likely to be created in-

side existing communities than between communities, and existing edges are more 

likely to be removed if they are between communities. This leads to the conclu-

sion that Twitter communities are indeed becoming more polarized as time passes. 

1 Introduction 

A recent article [1] highlighted the paradox that, although the use of social media 

has becoming increasingly widespread, it has not been able to “mobilize society 

into action” long enough to address any major global issue. The authors blame this 

on the simplistic design of current social media platforms, pointing out the ab-

sence of mechanisms for reflection, argumentation, and consensus formation. This 

is related to the well known “echo chamber” phenomenon, whereby people tend to 

discuss issues only with others with similar views. Social media has been blamed 

for encouraging the echo chamber effect and increasing polarization in society [2, 

3]. 
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It is common knowledge that social networks, in real life as well as online, fea-

ture assortative mixing: people (or users) tend to communicate with those who are 

similar to themselves in some respect. When represented as networks, groups of 

vertices representing similar people tend to be more densely connected by edges 

than one would expect by chance [4]. This is the basis of community structure in 

networks, which has been studied intensively during the last 15 years [5]. 

In the context of online social media platforms, such as Facebook and Twitter, 

it is well known that user networks feature community structure. Users usually 

“follow” or “friend” other similar users, forming groups that are densely connect-

ed but loosely connected to other groups. When similarity is based on interests or 

opinions, users tend to be more strongly connected to others with similar interests 

and isolated from those with different interests or opposing viewpoints. One early 

study [6] analysed the network structure of (US domestic) political blogs and 

found that conservative and liberal blogs formed separate communities with little 

overlap. Following the launch of Twitter, another seminal work [7] obtained 

tweets related to a US election and constructed a retweet network, in which each 

edge represents a retweet from one user to another. This network was also found 

to split into two separate, ideologically opposed, communities. 

The above works showed that social media platforms facilitate the echo cham-

ber effect, by allowing users to form communities. However, this does not neces-

sarily mean that these platforms encourage the formation of separate communities; 

they might have existed already. 

The aim of this paper is to investigate whether social media platforms increase 

polarization of users, using Twitter as an example. We do this by checking wheth-

er community structure in the Twitter follows network becomes stronger, in some 

sense, as time passes. We consider only the network topology, ignoring the attrib-

utes of users and the content of their communication (tweets). We do not attempt 

to detect the topic or viewpoint that characterizes each community, or even verify 

whether a coherent topic exists. This is for simplicity and to avoid making our re-

sults dependent on a specific method of topic detection. 

A naïve approach might be to perform community detection [5] on the network 

and compute the modularity [8] of the partition, and repeat the process at different 

times. However, this would be impractical because 

1. The Twitter follows network is too large to obtain and analyse, especially be-

cause access to it is rate-limited. 

2. The network vertices change over time as users come and go. 

3. Different partitions could be found each time, as an artefact of the (nondeter-

ministic) community detection algorithm. 

4. Modularity (or some other common metric) depends on many factors and 

would not reveal small changes in the strength of community structure. 

Our approach avoids these problems, as follows: 

1. We collect small samples instead of the whole (reciprocated) follows network. 
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2. We sample the same set of users each time the experiment is repeated. 

3. We detect communities only on the first run of the experiment. 

4. We measure the strengthening of the community structure by counting how 

many new reciprocated follows edges are created inside communities and how 

many edges are removed between communities, and comparing these with a 

null model in which edges are added and deleted randomly. 

In the next section, we explain how data is collected from the Twitter network. 

Section 3 presents the experimental results for new and deleted edges, comparing 

these with a randomly changed network. Section 4 presents our conclusions. 

2 Data collection 

The data collection was done in two phases: in June and August 2016. In each 

phase, three network samples were collected. This section describes the network 

samples and how they were collected. 

2.1 First phase: snowball sampling 

The basic strategy for the first phase of data collection is snowball sampling. This 

starts from a seed user (vertex) s and crawls to all of its followers (users who fol-

low s) and “followings” (or “followees”: users who are followed by s). This pro-

cess is repeated recursively for each of the users found until enough vertices are 

obtained. We crawl to a maximum distance d from the seed, collecting all vertices 

at distance 0, 1, …, d-1, but not necessarily all vertices at distance d, because of 

the huge number of them. 

In order to reduce the time costs, we choose a seed which has a reasonably 

small number of followers and followings. For our experiments we collected net-

work samples from three seeds: a beauty blogger, a comic writer and a computer 

graphic scholar. We refer to these networks as “Beauty”, “Comic”, and 

“Graphics”, respectively. 

2.2 Omitting users or edges 

Because of the rate limit of Twitter’s API, which allows 15 requests every 15 

minutes, it is time-consuming to collect users who have a large number of follow-

ings or followers. For example, if a user has 4 million followers, which is quite 

common for a famous person, it would take 13 hours to collect all of the user’s 
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followers. Because of the time cost and the limited time available, it was neces-

sary to restrict the data collection. 

One way to achieve this would be to omit users who have a large number of 

followers, and the other is to partially collect the followers and followings of a us-

er. Both of these methods will introduce bias to the data collected. For the first 

method, we might miss a user who is famous and has an important role within a 

community (as well as all edges of this user). Although the first method is not per-

fect, the bias of the second method is much more severe. If we were to omit some 

edges between users, we are likely to miss some users who would form triangles 

with other users and create communities. For example, x, y, and z all follow each 

other, forming a triangle as shown in Fig. 1(a). If we partially collected followers 

of x and omitted z, which is a follower of x, the triangle {x, y, z} might not be no-

ticed, as in Fig. 1(b). As a result, the community detection might not place them 

into the same community, resulting in a distorted structure. Moreover, in this case, 

a deeper search might be needed to find z: in order to find z, one has to find y first. 

Obviously, the peripheral vertices will never be complete because the data collec-

tion has to stop somewhere, but we make sure that the network sample contains all 

edges for vertices that do appear in the sample. I.e., if the network sample is G = 

(V, E) and uV and vV and {u, v} exists in the complete network, then {u, v}E. 

Therefore, we decided to omit all users who have more than 50,000 followers. 

 

Fig. 1. (a) x, y, and z follow each other, forming a triangle. When collecting all followings and all 

followers of a user, this triangle can easily be found. (b) However, when collecting followings 

and followers partially, this triangle might be ignored. 

2.3 Directionality 

Considering the edge direction should be expected to contribute to a more accurate 

result [9]. However, in Twitter, any user u can follow any other user v, creating a 

directed edge (u, v). Such a unidirectional edge is less valuable than a reciprocated 

pair of edges, u follows v and v follows u, which indicate a mutual relationship. 

We therefore focus on undirected networks, in which an edge {x, y} means that x 

follows y and y follows x. When collecting followers of a specific user u, we omit 

x y 

z 

x y 

z 
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those users that u does not follow; when collecting u’s followings, we omit users 

that do not follow u. To implement this, directed networks were collected and then 

converted to undirected networks with reciprocated edges after sampling. 

2.4 Three datasets 

In order to make our results more robust, we collected three different networks 

starting with three different seed vertices. Fig. 2 shows a visualization of the 

Graphics network, while Table 1 shows some statistics about all three networks 

collected in the first phase, in June 2016. This describes the three directed net-

works and the three undirected networks which contain reciprocated edges only. 

Table 1 also shows the communities found by the Infomap algorithm [10] for each 

network. We use Infomap for all experiments in this paper because it is one of the 

best and most popular community detection algorithms. 

 

Fig. 2. Visualization of the Graphics network. 
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Table 1. Statistics of the three networks collected in June. The “Directed” columns indicate the 

vertices and edges before removing directionality. The “Undirected” columns describe the net-

work of reciprocated edges. 

Network 

Directed Undirected 

vertices edges vertices edges density communities 
largest 

community 

Beauty 6756319 10394337 249259 437852 1.4x10-5 44 58275 

Comic 2277503 3860175 101022 171990 3.4x10-5 22 43681 

Graphics 938960 1444554 47179 77909 7.0x10-5 10 26563 

2.5 Data collection for the second phase 

There are two possible methods for the data collection of second phase (in August 

2016). One is to crawl again from the same seed to collect a network by snowball 

sampling. The other is to directly collect all of the users that appeared in the first 

phase. Crawling from the beginning means doing a breadth-first search to a specif-

ic depth; this cannot ensure that all the users of first phase will be collected in the 

second phase. For instance, suppose that x, y, and z follow each other and form a 

triangle. When crawling from x with a depth of 1, this triangle will be found. 

However, if one of these edges is deleted before the second phase, a depth of 2 

will be needed to find the triangle. As a result, crawling from the beginning with 

the same depth will omit some users that exist in the first phase, resulting in an in-

complete network. Therefore, we chose to collect exactly the same users as in the 

first data collection phase, except those that no longer exist. Table 2 shows statis-

tics about the same three network samples collected in August. (Note that, alt-

hough we collect the same users as in the first phase, the number of vertices 

shown here is different because it includes all followers and followings.) 

3 Experiments 

3.1 Edges of real network 

Community detection was performed on the network samples from the second 

phase, but did not show any noticeable changes because two months is not enough 

time for communities to evolve. However, there are still a significant number of 

new edges and deleted edges. The next step is to investigate how often new edges 

appear inside communities, indicating that users start to follow others in the same 

community, and whether edges tend to be removed (by “unfollowing”) inside or 

between communities. We make two hypotheses: 
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Table 2. Statistics of the three networks collected in August. 

Network 
Directed Undirected 

vertices edges vertices edges 

Beauty 6957428 10717644 248363 463797 

Comic 2546530 4214677 103353 180604 

Graphics 994529 1522011 47491 84028 

 

1. New edges are more likely to appear inside communities than between com-

munities. 

2. Edges between communities are more likely to be removed than those inside 

them. 

In the remainder of the paper, we refer to edges inside communities as intra-

community edges and edges between communities as intercommunity edges. 

Fig. 3 shows the numbers of added and deleted edges of the three networks col-

lected, counting only the edges between vertices that are present in both versions 

of the network. That is, we ignore vertices that existed only in the first snapshot, 

and their edges. For example, in the Beauty network, after two months, 5076 new 

edges appear: 3212 intracommunity edges and 1864 intercommunity edges. Simi-

larly, in the other two networks, most of the new edges are intracommunity edges, 

which seems to support the first hypothesis stated above. For the deleted edges, 

for all three networks, the number of intracommunity deleted edges exceeds the 

number of intercommunity deleted edges, which seems to disprove our second hy-

pothesis. However, intracommunity edges are far more numerous than intercom-

munity edges, so whenever an edge is removed, it is more likely to be an intra-

community edge, by chance. 

 

Fig. 3. Distribution of new and deleted edges of the three networks collected in both phases. (a) 

Beauty; (b) Comic; (c) Graphics. 
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3.2 New edges of random case 

To evaluate the numbers of new and deleted edges correctly, the actual numbers 

must be compared with a null model which adds or deletes edges randomly. 

If G1 = (V1, E1) and G2 = (V2, E2) are the networks of the first and second phase 

respectively, we randomly generate a new edge {u, v} where uV1V2, vV1V2, 

and {u, v}E1. This means that we connect a randomly chosen pair of vertices that 

existed in both June and August but were not linked by an edge in June. 

Based on this strategy, for every network, the total number of edges added is 

equal to the number in the corresponding real network. Table 3 shows the average 

number, largest number, and smallest number of new intracommunity edges in all 

three networks after generating the randomly grown network 100 times. Taking 

the Graphics network as an example, there should be 795 new edges, of which 727 

are intracommunity (calculated from Fig. 3). From this table, the average number 

of intracommunity new edges in the random case is 297 which is much less than 

the real result, which is 727 edges. Even the largest value found, 329, is still much 

less than 727. For the other two networks, the results are consistent with the 

Graphics network. This answers our question: new edges occur inside communi-

ties more often than expected by chance. 

Table 3. Intracommunity new edges of the random case in the three networks. 

Network Maximum Minimum Average Real 

Beauty 704 584 637 3212 

Comic 652 548 597 1616 

Graphics 329 254 297 727 

 

Fig. 4 shows the distribution of the number of intracommunity edges added in 

each of the random networks. The star in each chart represents the number of in-

tracommunity edges in the corresponding real network, which is always much 

greater than the numbers achieved in the random case. This allows us to reject the 

null hypothesis that the result is by chance. In principle, we could plot these 

curves analytically and calculate the extremely small probability that the real re-

sult could happen by chance, but we have not done so here. 

3.3 Deleted edges of random case 

Fig. 3 shows that most of the deleted edges are intracommunity edges, but this is 

to be expected because there are relatively few intercommunity edges to delete. 

We need to investigate whether deleted edges are more likely to be intercommuni-

ty than expected. We do this by simulating another shrunk network based on the 

original network. The strategy is to remove edges from this network randomly. 
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Fig. 4. Number of new intracommunity edges added in each network. (a) Graphics network (run 

112 times); (b) Comic network (run 110 times); (c) Beauty network (run 50 times). 

If networks G1 = (V1, E1) and G2 = (V2, E2) are the networks of the first phase 

and second phase respectively, we randomly choose a edge {u, v} where 

uV1V2, vV1V2, and {u, v}E1. This means that we randomly choose a pair 

of vertices that existed in both June and August and were linked by an edge in 

June, and delete that edge. 

Fig. 3 shows the number of deleted edges in the three networks. For these three 

networks, 17853, 2004, and 747 edges were removed, respectively. 

In order to test the hypothesis that intercommunity edges are more likely to be 

deleted, we compare the number of deleted edges of the random case with the real 

network, in Fig. 5. Taking the Comic network (Fig. 5(b)) as an example, the aver-

age number of intercommunity deleted edges is around 75 and even the maximum, 

97, is far less than the real result, 222. These results are less pronounced than for 

added edges (Section 3.2) but still show that intercommunity edge deletion is 

more common than expected by chance. 

  

3.4 Biased network 

Section 3.2 showed that new intracommunity edges are added far more often than 

could happen by chance, but a more interesting question is how much more often. 

(a) (b) 

(c) 
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Fig. 5. Number of deleted intercommunity edges in each network. (a) Graphics network (run 100 

times); (b) Comic network (run 100 times); (b) Beauty network (run 31 times). 

In order to measure this, we imagine a biased random agent that repeatedly 

adds new edges: each edge has a probability p to be an intracommunity edge; oth-

erwise it is an intercommunity edge. We adjust the probability p until the number 

of intracommunity edges added is close to the real value. After testing several 

times, the probability values found for the three networks are 0.7 (Beauty), 0.75 

(Comic), and 0.82 (Graphics). From Table 3 and Fig. 3, we can compute equiva-

lent probabilities for an unbiased random agent: 0.12, 0.26, and 0.37, respectively. 

This means that, in the Beauty network for example, intracommunity edges are 

nearly six times more likely to be added than expected by chance. 

4 Conclusions 

We have shown that, at least for three network samples, the community structure 

of the Twitter “follows” network seems to become stronger as time passes, in-

creasing the separation between communities. 

It is important to emphasize that we have analysed only the network topology 

and not the details of the users or their tweets, which are outside the scope of this 

work. Therefore, we have no evidence of whether a community (in our sense) rep-

resents a single topic or viewpoint, or whether different communities represent 

opposing viewpoints. Indeed, because we only detect disjoint communities, it is 

unlikely that each community detected discusses only a single topic. Nevertheless, 

(a) (b) 

(c) 
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in cases where communities do correspond to viewpoints, this separation can be 

interpreted as polarization. 

Our specific findings are: 

1. New edges are intracommunity edges much more often than expected. 

2. Deleted edges are intercommunity edges much more than expected. 

3. When adding edges, users are about 3-4 times more likely to add an intra-

community edge than an intercommunity edge. 

These observations probably underestimate the true effect. Because we collect 

small samples of the network, community detection is certain to be imperfect be-

cause some communities are split between the sample and the rest of the network 

and cannot be found. In the extreme case, if random communities were found, our 

results would be no different from the random null model with which we compare. 

If we had time to collect larger samples, we would therefore expect an even more 

pronounced effect. This is a good topic for future work. 

It is interesting to speculate on the reason for the effect we observe. One possi-

ble explanation is the recommender system of Twitter: users receive suggestions 

about users that they might want to follow, and these are often users who are al-

ready in the same network community. Further work would be needed to find out 

whether the generation of new edges is consistent with Twitter’s recommendations 

(which are not revealed except to the users themselves). In any case, the recom-

mender system cannot be the only explanation because of (2) above: Twitter never 

recommends users to “unfollow”. It seems more likely that users start following 

others after discovering them through the network structure itself; e.g., by re-

tweets. New users (those that exist in the later snapshot but not the first) might 

even play a role in introducing existing users to each other and causing an edge to 

appear, even though we exclude these new users from our network samples. 

Finally, it may be argued that, even if Twitter communities become more polar-

ized over time, this might not be caused by the platform itself. The Twitter net-

work may be converging over time to an underlying real-world network which is 

already highly polarized. Even so, Twitter provides the mechanisms to reflect and 

enhance this polarization, unlike traditional media and communication methods, 

which might tend to reduce it. 

Future work 

Further work is needed to estimate the probability with which a biased random 

agent chooses an intercommunity edge to delete. 

We have used a simple null model for our unbiased random agent, whereby 

vertices to connect are chosen uniformly randomly from all vertices in the sample. 

Numerous other null models are possible; for example, the agent might preferen-

tially connect to popular (high-degree) users or to users with a similar name or de-
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scription. In future, it would be useful to test other null models to rule out other 

possible explanations for the results found. 

Another area of future work is to repeat the analysis with different community 

detection algorithms instead of Infomap. This is simple to do because we have 

kept the sampling and analysis phases separate, which would not be the case if we 

had used (e.g.) a local modularity [11] method to collect the network samples. A 

more challenging task would be to detect overlapping communities, instead of dis-

joint communities, in the networks. Overlapping communities are more realistic 

because many Twitter users have more than one interest and hence belong to mul-

tiple communities. However, overlapping community detection is more difficult 

and the results would be harder to analyse. 
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