TOWARDS THE COMPILATION Of
ANNOTATED LOGIC PROGRAMS

Steve Gregory
Research Report DOC 80/16

June 1980

ABSTRACT

IC-PROLOG provides a simple system of annotations to specify the control
component of a program, These are used to instruct the interpreter in the
manner in which the program is to be executed. We consider these annotations
and investigate the "compilation" of annotated programs into strictly
sequential programs, which can then be either interpreted or compiled further,
Lastly, a semi-automatic system is presented, which effects the compilation of

simple annotated programs.

Department of Computing

Imperial College of Science and Technology
University of London

180 Queen's Gate

London SW7 2BZ

Telephone: 01-589 5111 Telex: 261503

CONTENTS

ABSTRACT

INTRODUCTION

CHAPTER 1: THE CONTROL COMPONENT OF LOGIC PROGRAMS

1.1 DNotation and terminology

1.2 Specifying the control component
1.3 Dataflow coroutining

1.4 Parallel execution

1.5 Control alternatives

1.6 Processes as data structures

CHAPTER 2: TRANSFORMATION OF LOGIC PROGRAMS

2.1 Early work in program transformation and synthesis

2.2 Standard form logic program derivation
2.3 Horn clause program transformation

2.4 Automatic branching

2.5 Annotations to control symbolic execution

2.6 Coroutining in transformation
2.7 Parallelism in transformation

2.8 Processes as data structures

CHAPTER 3: IMPLEMENTATION OF A COMPILATION SYSTEM

3.1 Use of the systen

3,2 Implementation of system

3.3 Possible enhancements to system
3.4 Adding parallelism to system

CONCLUSION

REFERENCES

Page

o & F

13
20
21

27

27
29
30
37
4o
Lo
48

50

72

73

APPENDIX 1

Listing of the program

APPENDIX 2

Example runs

¥

CHAPTER 1

THE CONTROL COMPONENT OF LOGIC PROGRAMS

<

Ever since Kowalski [15] proposed that
Algorithm = Logic + Control

the advantages of separating the logic and control components of a program
have been well known. Ideally, the logic component should be a clear and
obviously correct statement of the problem while the control component is

responsible for the efficiency of the algorithm,

Tn this chapter we examine methods of specifying the control component,

particularly of PROLOG programs.

1.1 DNotation and terminology

In this report, a clause is generally taken to mean a Horn clause, with
one consequent atom and a number of antecedents. A goal clause is a clause
with no consequent, while a goal atom is the sole atom in a goal clause with

only one antecedent.

In a procedural context, a procedure is a clause, with a procedure head
(the consequent) and a procedure body consisting of a number of procedure

calls. We shall refer to the independent execution of a call as a process.

A search tree has nodes each labelled by either a goal clause or X
(signifying failure) or [J (success). The offsprings of a given node denote

all possible results of executing one step of that node's selected call.

A proof tree has nodes each labelled by an atomn. The offsprings of a
node denote each of the antecedents of the clause whose consequent unified
with that node's atom. There is a proof tree associated with each branch of

a search tree.
These terms are defined more fully in [3].

The syntax of IC-PROLOG will be adopted in the examples, i.e. a clause

is written in the form

B <~ Al & A2 & ... & An

variables, functors and most predicates are written in lower case, while

constants and "primitive" predicates are in upper case.

1.2 Specifying the control component

The computation rule determines which atom of a goal clause is to be

selected for execution. This defines a search tree for a given program and
goal clause. It also determines the order in which proof trees are
constructed. The search rule determines the order in which the search tree

is constructed.

Most PROLOG systems have an implicit control component in the form of a
default search rule and computation rule. ' The normal default search rule
is to try each of the clauses for the selected call's predicate in the order
in which they are written, thus constructing the search tree left - right
depth first. The default computation rule is the selection of the leftmost
call in each goal clause - corresponding to the left - right depth first

construction of the proof tree.

Although some PROLOGs, including IC-PROLOG, provide such facilities as
indexing of clauses to restrict the search tree, the most important feature
of IC-PROLOG for our purposes is the ability to modify the computation rule
by»ﬁéans of annotations. These features are outlined in subsequent sections
and more fully in [3,5], but first we consider an earlier scheme of control

annotations.

Control annotations in recursion eguations

Schwarz [19] has proposed an elaborate system of annotations to control
the behaviour of programs written in the recursion equation formalism,

These enable the programmer to select various evaluation mechanisms such as:
Call-by-value / -need / -opportunity.
Lazy evaluation.
"Almost tail recursion

Destructive operations.

Sy

1.3 Dataflow coroutining

Liberating sequential execution

The performance of a given logic program can often be improved by
constructing the proof tree other than in the default left - right depth
first order. This means that a call will no longer necessarily be run to
completion before the next call is entered. For example, suppose we have

the procedure
sort(x,y) <- perm(x,y) & ord(y)

If we wish to sort the list x by executing the goal <~ sort(x,y)
where only x is instantiated, the sort procedure will generate all
permutations one by one and then find whether each is ordered. It would be
preferable to coroutine between the perm and ord calls in order that the
generation of each permutation by perm is terminated as soon as ord fails,
Coroutining between calls can also sometimes make a nondeterministic

program deterministic. For example, consider the procedure
front(n,x,z) <~ append(x,y,z) & length(x,n)

where front(n,x,z) holds when x is the initial sublist of length n, of
list z. If the goal < front(n,x,z) is executed, where n and z are
insféntiated, then a succession of values for x will be generated by the
append call and each checked by the length call (similar to the sort example

above). In this case, however, coroutining between the append and length

welds Antertwines the two executions such as to eliminate the nondeterminism,

Eager consumers and lazy producers

In IC-PROLOG we can program a coroutining interaction by suffixing an
argument of a call by a "?" or "A" annotation. for the sake of simplicity
and without loss of generality, we shall henceforth assume that all terms
annotated by "?" or "4" are variables. Suppose there is a procedure whose
body is
y b

Ky

Al(t ceost)&...&Ak(t

.) & ... &
1 1
11 1m1)

Kt Xr e
An(tnl""’tnm

n
where the variable x is shared with at least one of the calls Al""’Ak 1-

We can make Ak an eager consumer of x by attaching a "?" annotation:

Jpny

A(Bgapevesto) & vod @A (B 1yeeyX?yuen,t,)& oo &
1V11 1n, At |

An(tnl,...,tnmn)

The effect of this is to allow the subtree of the proof tree rooted at
the Ak atom to be constructed independently.. We can regard the resulting
computation as comprising two processes, one constructing the whole proof

tree and another constructing the subtree rooted at Ak:

& Ak(...,x?,...) & - & An(...)

(A) " .

Process 2
Process 1

Although each process still constructs its proof tree (or subtree) in
left - right depth first order, the execution of the processes is
interleaved according to the binding of certain variables. In the situation
depicted above, a coroutining jump or return will take place whenever the
variable x - or any variable of a term to which x is bound - becomes bound
to a non-variable term, Whether a jump or a refurn is made depends upon

~tlie current point in the proof tree:

If the current point is not in the subtree rooted at Ak’ the current
smmint is saved and a coroutining jump made to that subtree, at its last

suspension point.

If the current point is in the subtree rooted at Ak’ the current point
is saved and a return is made to the "return address" saved at the time of
the last jump to this subtree. Before returning, the last execution step

- which caused the binding - must be undone.

The rationale behind this is that, since Ak is an eager consumer of x,
it is not permitted to bind x. When it needs x to be bound, this must be
done by one of the calls Al""’Ak—l' When one of these calls supplies a

binding for x, the execution of A, is immediately resumed.

k
Complementary to this»is the ability to specify that Ak is a lazy

producer of x, by attaching a "4" annotation:

GxM ot)& Ll &

e

Al(tll,...,tlml) & ... & A (t

k
vt)
n

K1

A(t ..

gy

In this case, whenever one of the calls Al""’Ak-l needs a binding for
x 1t suspends whilst A _ executes. When Ak supplies the required binding,

k
l""’Ak—l resumes,

The action to be taken whenever x is bound, again depends upon the

the execution of A

3

current point:

If the current point is not in the subtree rooted at A the current

k’
point is saved and a coroutining jump made to that subtree, at its last
suspension point, Before jumping, the last execution step - which crused

the binding - must be undone.

If the current point is in the subtree rooted at Ak’ the current
is saved and a return is made to the "return address" saved at the time .

the last jump to this subtree,

There may of course be any number of annotated calls in a given procedure
body, and coroutining may occur at several levels, However, we impose the

following restrictions:
a) No call may contain more than one annotated argument.
b) No variable may be annotated more than once in a procedure body,

¢) For any two annotated variables x and y, y must not occur in ary

term to which x is bournd. This is a generalization of b).

o

In practice, any limitation resulting from the above restrictions
often be overcome by the use of the parallel scheme, to be described in

section 1.4,

We mentioned earlier the role of processes in coroutining. To

illustrate this, we shall take as an example the following procedure set:

A(x) < B(x,y,z) & C(y?,z) & D(zM)
B(X,y,Z) <= E(va) & F(V’f‘,Z>
C(y,z) <= G(y,w) & H(wt,z)

D(z) <= I(z)

A process is created for each annotated atom placed in the proof tree
and is responsible for the construction of the subtree rooted at that atom.

The structure of processes involved in the example is depicted below:

E(x,v) & F(vhz) G(y,w) & Hwhz) 1(z)

rocess 4 Process 5 Process 3
Process 2

P
Process 1

The rules governing coroutining interaction may now be stated in the

framework of processes:

When a variable, say x, is bound to a non-variable term, determine
whether there exists a process engaged in the construction of the subtree
rooted at an atom in which y is annotated, where either y is x or y is bound
to.a term containing x. (The restrictions quoted earlier ensure that there
is not more than one such process.) If such a process exists, determine
whether it is a consumer (its root atom contains a "?") or a producer (its
-y =yt atom contains a "A"). Also determine whether we are currently
constructing the subtree rooted at that process's root atom - in which case

N,

“he process is active - or elsewhere - the process is passive.

1) If the process is an active consumer or passive producer, undo

the last execution step.

2) If the process is passive, suspend the current process and jump.

Else (the process is active), return from the current process.

In the above example, suppose that process 5 is currently executing
the H call. If w becomes bound to a non-variable, a return will be effected
to process 2 which is executing the C call. If instead z is bound by process
5, the binding will be undone and a Jjump effected to process 3, returning

as soon as the latter supplies the required binding of z.
Two questions remain unanswered:

a) What happens when a process finishes, i.e. when its proof tree is

10.

complete? In the conjunction
Al(x) & ... & Ak_l(x) & Ak(x?) & . & An(x)

this would occur when the execution of‘Ak is complete,.

b) What happens when a process constructing a proof tree attempts to
enter a subtree which is being constructed by an inner process? This would

occur when the execution of all of the calls Al""’Ak—l is complete.

When a process finishes, a return is forced and the process is removed,
thus terminating the associated coroutining interaction. In the example
above, suppose that process 4 finishes owing to the completion of the

execution of F. Process 4 is removed and the execution of E is resumed:

A(x)

B(x V,2) & ¢(y?,2) & D(z4)

AN

G(y,w) & H(whz) 1(z)

AN A

Process 5 Process 3

E(x,v) & F(vT z)

JA

Process 1

N

If a process tries to enter an annotated call, i.e. one whose subtree

COMPLETE

Process 2

is being constructed by an inner process, the inner process is removed and
the construction of its subtree is taken over by the outer process. This
terminates the corresponding coroutining interaction. In the example,

suppose that the execution of the E call is now completed and hence so is
that of B: process 1 now tries to enter the C call. Process 2 is removed

and the execution of C is continued by process 1:

-y

11,

/////////////////// A(X)\\\\\\\\\\-\\\\\\\\\\\\
/////f(x,y,Z) ////E(y°\ii\\
, & F(vhz) Gly,w) & H(whz)

A\

Process 5

COMPLETE
Process 3

Process 1

Delaying the data transfer

The clause bar is often useful in the execution of coroutined programs.

This annotation, provided in IC-PROLOG, is a which is written in place

of "&" at no more than one point in a procedure body. It has the effect of
delaying any coroutining jump or return until all calls to the left of the

clause bar have been run to completion.

An example

Example 1 illustrates the features described so far, including an eager

consumer, lazy producer and clause bar.

Example 1
sumdblsq(x,n) <- dbl(y,z) & sq(x,y}) & sum(z?,n)
dbl(NIL,NIL) <-
dbl(m.x,n.y) <~ PLUS(m,m,n) : dbl(x,y)
sq (NIL,NIL) <=
sq(m.x,n.y) <- TIMES(m,m,n) : sé(x,y)
sum(NIL,0) <~
sum(m.x,p) <- sum(x,n) & PLUS(m,n,p)

- ple-y

1z,

This is a program for sumdblsq, where sumdblsq(x,n) holds when n

is the sum of the doubles of squares of integers in the list x, 1.e.
n = E : 2k2 .
k in x

Tt works by coroutining together the separate activities of squaring, doubling
and summing a list. The clause bar in the dbl procedure forces the PLUS to
be computed before jumping; similarly for the sq procedure. Without the
clause bar, all PLUS and TIMES calls would be saved until the end of the

execution.

We exhibit the search tree of the execution of the goal
<- sumdblsq(3.2.NIL,n) , which happens to be deterministic. Note that the
variables in each procedure are superscripted by the "level number" to ensure
they are distinct; this method is adopted in all subsequent examples, Also,
a fail node (X) is only shown when there are no procedures that unify with

the selected call.

0 <- sumdblsq(B.Z.NIL,nO)

Y <- dbl(yl,zl) & sq(3.2.NIL,y1¢) & sum(zl?,no)

1,2 2
y /oy
Y <- dbl(nz.yz,zl) & (TIMES(3,3,n2) : sq(Z.NIL,yZ)) &

sum(zl?,no)

n°/9

1,4 4

7z /n .y

) < dbl(9.yziz;),& Sq(Z.NIL,yZ) & sum(zl?,no)

h <~ (PLUS(Q,Q,nq) : dbl(yz,yq)) & Sq(Z.NIL,yZ) &

L 0
sun(n .y ,n)
n“/18

L < a1 (5%, 5) & sq(2.81L,5°) & sun(18.y7,n°

) <= dbl(yz,yq) & Sq(Z.NIL,yZ) & sum(yq,né) &
PLUS(18,n6,nO)

) <— dbl(n7.y7,y4) & (TIMES(Z,Z,n?) : sq(NIL,y7)) &
sum(yq,né) & PLUS(18,n6,nO)

Y <- dbl(@.y7lyq) & sq(NIL,y7) & sum(yu,né) &
PLUS(18,n6,nO)

L < (PLus(h,4,n?) ¢ avi(y’,y?)) & sq(NIL,y') &

sum(n9.y9,n6) & PLUS(18,n6,nO)

gy

13.

n9/8
) < dbl(y7,y9) & Sq(NIL,y7) & sum(8.y9,n6) &
PLUS(18,n6,nO)‘
b <= avi(y’,y?) & sq(NIL,y") & sum(y”,n't) &
PLUS(8,n11,n6) & PLUS(lS,né,nO)
y7/NIL
U« ami(nrn,y?) & sun(y?,n't) & pLus(8,n'l,n0) &
PLUS(18,n ,nO)
2 /NIL
<~ sum(NIL,nll) & PLUS(8,n11,n6) & PLUS(18,n6,nO
11/O
) < PLUS(B,O,né) & PLUS(18,n6,nO
n6/8
b <- PLUS(18,8,nO)
no/26

o [

1.4 Parallel execution

~ A new computation rule is shortly to be implemented in IC-PROLOG, A
o onnotation "//", used in place of "&", is interpreted declaratively as
~conjunction but dictates that calls thus conjoined are to be executed

concurrently. In a multi-processor environment, the annotation could be
used to reduce execution time by means of real parallelism, Hogger [147]

gives as an example the goal clause
<~ member(E,A) // member(E,B)

for determining whether E is a member of the intersection of sets A and B.
The two member calls would be run on separate processors to halve the

maximum execution time. This example is very simple in that the calls do
not manipulate shared variables, but in general provision must be made for

synchronization and communication between parallel processes.

In the present project, we are concerned only with pseudo-parallelism
as a means of modifying the behaviour of programs. There would be no
advantage in running the above goal clause in pseudo-parallel; the benefits
to be obtained arise from the same considerations of "intertwining" that

inspire coroutining. We shall see examples of this later.

po-y

14,

The mechanism to be described here for pseudo-parallelism is a slightly
modified version of that to be employed by IC~-PROLOG. The way in which the

goal clause
< member(E,A) // member(E,B)

would be executed is by initiating a process to construct the proof tree

rooted at each of the member atoms:

//

member(E,A) member(E, B)

Process 2 Process 3

Process 1

The two processes (2 and 3) are interleaved by executing one step of each
in turn until one of them finishes, whereupon the other is run to completion.

When both are finished, process 1 takes over (and promptly finishes).

Suspension of parallel processes

-

A simple means of synchronizing processes executing in pseudo-parallel

”" '"
.

is the "!" annotation., By attaching a annotation to one or more
.arguments of a call we can specify that the call should be executed only if
each such argument is bound to a non-variable term. If not, then the

process suspends until this requirement is satisfied.

In this scheme, processes are created whenever the current goal clause
in the search tree begins with (Cl//...//Cn) where each Ci is a conjunction
- we assume, for the sake of simplicity, that each Ci is a single call, A
process Pi is created to execute each Ci and these processes are run in
(pseudo-)parallel, The process which was previously executing suspends
until all processes Pl""’Pn have finished. The other reason for which

"wWan

a process may suspend is as a result of the annotation mentioned above,.

For example, consider the following simple example:

15.

A(x) <= (B(x) // c(x)) & D(x)

B(x) <~ E(x) & F(x)

c(x) <= G(x!) // H(x) .

and the corresponding proof tree at some point in the computation:

A(x)
/ \\
B(x) D(x)
/\
E(x) & P(x)
/\

Process 2

Process 3

The first step was for process 1 to execute one step of the A call, which
brought into being processes 2 and 3 and caused process 1 to suspend.

“Process 2 then executed one step of the B call and process 3 one step of

the C call. This latter action created processes 4 and 5 and caused process
3 to susperd. In the state depicted, there are five processes of which
three are suspended: processes 1 and 3, waliting for their subsidiary processes
to finish, and process 4, waiting for x to be instantiated. If process 2
now binds x to a non-variable, process 4 will become active again, joining

processes 2 and 5.

Suppose now that process 4 finishes: it is removed and processes 2 and
5 continue in parallel, If process 5 then finishes also, it too is removed
and process 3 is no 1onger)suspended. Since there are no more calls for
process 3 to execute, it immediately finishes, leaving process 2 to execute
alone, Finally, when process 2 finishes, it is removed and process 1

resumes, whereupon it begins to execute the D call.

vy

16,

As an illustration of the parallel control rule, example 2 is one
possible program to solve the problem ahalyzed by Dijkstra [8] who attributes
it to R.W. Hamming. This problem is "to generate in increasing order the
sequence of all numbers divisible by no primes other than 2, 3 or 5". That

is, to generate the set
fx: x = 21398 i 0835208k > o}

in ascending order. The following solution happens not to remove duplicates
but could easily be extended to do so. It is a good example of the
potential clarity of logic programs (c.f. Dijkstra's solution in his

imperative language).

Example 2

generate(1l.x) <~ multlist(2,1.x,r) // multlist(3,1.x,s) //
multlist(5,1.x,t) // merge(x!,s!,t!,x)

miltlist(n,u.x,v.y) <~ TIMES(n,u,v) & multlist(n,x!,y)

merge (U.X,v.y,W.Z,u.t) <~ u v & & merge(x!,v.y,w.z,t)

ugw
merge(u.x,v.y,w.z,v.t) <- v<u & v £ w & merge(u.x,y!,w.z,t)
merge (u.x,v.y,w.z,W.t) <- w<u & w < v & merge(u.x,v.y,z!,t)

Here, generate(x) holds when x is the list representing the required
setjA The computation comprises four processes throughout: three which are
continuously running multlist and one executing merge. Bach multlist process
multiplies as much of its incoming list as is instantiated and passes this

Tadew oo the merge process. merge runs as soon as all three incoming lists
are instantiated, and the resulting merged 1list is fed back to each of the

~Ulligr processes.,

Combining parallelism and coroutining

We can obtain a fairly powerful control strategy by combining coroutining
and parallelism, This requires a generalization of the two mechanisms

described so far.

We distinguish between coroutine processes and parallel processes,
according to the circumstances in which a process is created. We also need
the concept of the current process set, which contains a number of processes

being executed concurrently. Let us consider a simple example:

17.

A(x) <= B(x) & C(x?)
B(x) <= D(x) // BE(x)
o(x) <= F(x) // G(x) ‘

After the B call has executed one step, the situation is:

/A(X\

B(x) c(x?)

D(X E<X Process 2

, (cor sus x)
Process 1
Process 3 Process 4

Apaf% from the main process (1), there are two parallel processes (3 and 4)

and one coroutine process (2). Processes 1, 3 and 4 are in the current
process set, while process 2 is coroutine suspended on the variable x -
edmoe X is the annotated variable at the root of its subtree. Process 1

is temporarily suspended since it is waiting for two subsidiary processes to
-finish. A process may also become temporarily suspended owing to the ™!"
annotation as described earlier. Processes which are temporarily suspended
remain in the current process set; those which are coroutine suspended do
not. Deadlock occurs if all processes in the current process set are

temporarily suspended.

Now, since we have parallelism, for any annotated variable there may
be a number of processes which are consumers and a number which are producers.
This slightly complicates the earlier method of coroutine Jjumps and returns.
Formerly, the single consumer and single producer of each annotated variable

took turns to .be suspended, but how do we perform Jumps and returns now?

Returning to the example, suppose that process 3 binds x. We know that
this is a producer of x because it is not descended from a call containing

"x?", (A process would also be a producer of x if it were descended from a

Spo-y

18.

call containing "x4".) Therefore we do not need to undo the binding.
Process 3 then becomes coroutine suspended on x, and since there is a
consumer (process 2) already suspended thus, the latter is resumed, i.e.

I3

brought into the current process set. If process 2 now executes one step,

we have:

A(x)
/ \
B(x) & c(x?)
7 N
[/ EX) F(x) //

Process 2

Process 1

Now, processes 1 and 2 are temporarily suspended (waiting for subsidiary

processes to finish), processes 4, 5 and 6 are executing, and process 3 is

. wograutine suspended on X. Suppose now that process 5 tries to bind x. We

find that this process is a consumer (since it is descended from ¢(x?)) so
_the hinding is undone and process 5 becomes coroutine suspended on X.
Simultaneously process 3 is resumed since it is a producer suspended on X.
If process 6, another consumer, now also tries to bind x, the binding is
again undone and the process Jjoins process 5 in being suspended on X. No

producer is resumed this time,

This continues until one of the processes finishes. If the last of a
number of sibling parallel processes finishes the parent will be released
from its temporary suspension. If a coroutine process finishes, a "forced
return" is effected and the process removed. That is, if a consumer, any

producers suspended on its variable are resumed, and vice versa.

In general, then, the rules governing coroutining interaction are as

follows:

et

19,

When a variable x is bound to a non-variable term, determine first
whether x is annotated in some call. If so, determine whether the current
process is a consumer or a producer of x, according to whether or not it is
descended from the annotated call. If there are processes of the opposite
type coroutine suspended on x, resume them, Then suspend the current process

on %, joining any others of the same type that may already be there.

Tt will be seen that a jump or return is no longer necessarily a single
event, but consists of several acts of suspension and resumption. There may
be a number of consumers and a number of producers in the current process set,
but notice that at any given time, all processes of one type are current while
one or more processes of the other type are suspended. It should also be
pointed out that the mechanism described is not entirely symmetrical: if a
number of producers become suspended in succession, they may produce more data

than is required by the consumers,

Finally, it is clear that in the absence either of coroutining or of

parallelism this method reduces to those described earlier for each strategy.

Let us now see a real example using coroutining and parallelism, Example
3 illustrates a common class of programs in which a consumer performs a number

of operations in parallel upon each item of data supplied by the producer.

Example 3
” f(n,z) < check(x) & front(n,x%,z)
check(x) <~ pl(x) // q1(x)
pl(NIL) <~

pl(u.x) <= p(u) & pl(x)

qL(NIL) <-
ql(u.x) < g(u) & ql(x)
front(0,NIL,z) <-

front(s(n),u.x,u.z) <~ front(n,x,z)

f(n,z) holds when both p and q are true of each of the first n elements
of the list z. The test is performed by running, in parallel, processes to

test the list for each property.

Programs of this kind could not be written using only the coroutining
computation rule. If the "//" were a "&", only the first call pl(x) would

be executed each time before resuming the producer, leaving the second call

20.

ql(x) undone. To show how this scheme works, we exhibit the search tree
for the goal <- £(2,2.4.6.NIL) and take p(u) and q(u) to be EVEN(u)

and u < 5 respectively.

%

0 <

- £(2,2.,4,6.NIL) ‘

0 <~ checkgxlz & front(Z,xlT,2.4.6.NIL)
b« (p1(xV) // q1(x})) & front(2,x'M2.L.6.NIL)

x1/2.x3
o < (91(2.x3) // q1(2.x3)) & front(l,x3,4.6.NIL)
o <~ ((EVEN(2) & pl(x3)) // 91(2.x32) & front(l,x3,u.6.NIL)
) < ((BVEN(2) & p1(x0)) // (2 <5 & q1(x7))) &

front(l,x3,4.6.N1L)

L« (p1(x2) // (2.< 5 & ql(x°))) & front(1,x,4.6.NIL)
> <= (pl(xB) // ql(XB)) & front(l,x3,4.6.NILl

x3/4.x8
) <- (91(4.x82 // ql(u.XB)) & front(O,x8,6.NIL)
) <~ ((EVEN(4) & pl(x8)) // glga.x82) & front(O,x8,6.NIL)
) < ((BrEN(W) & 31(xD)) // (4 < 5 & 1(xD))) &

_ front(O,x8,6.NIL)
) <- (pl(x8) /) (4 <5 & ql(x8))) & frqnt(o,x8,6.NIL)
Y <~ (pl(x8) // ql(x8)) & front(O,x8,6.NIL)
x8/NIL

> <~ pL(NTL) // q1(NIL)
) <- gql{(NIL)
o

1.5 Control alternatives

IC-PROLOG allows the computation rule within a procedure to be determined
by its use, i.e. the input/output pattern of arguments in the call. This
may be done by supplying a list of control alternatives:

BN

These alternatives should all be copies of a procedure P, to which the whole

21,

list is equivalent declaratively. They differ only in the annotations and
ordering of calls in the body, and in their head annotations. The head
annotations specify which alternative should be used in a particular case,
depending upon "?" and "A" annotations‘attached to terms in the procedure
heads. The exact use is explained in [3,5] but essentially a "?"-annotated
head term means that the term should be instantiated, whereas a "A"-annotated

head term should not, in order for the alternative to be used.

It is interesting to consider the effect of using different logic in the
alternatives, so that the logic depends upon use. This can be dangerous if
used in combination with negation as failure and therefore is not permitted
by IC-PROLOG. Otherwise, however, such a program can be read declaratively
as though the head annotations were absent; these having the pragmatic effect
of restricting the search according to use, We shall see in section 1.6
that this can be useful.

1.6 Processes as data structures

Hoare [12] gives an interesting algorithm for representing a set of
integers, in his notation for Communicating Sequential Processes, There is
an array of processes, each of which contains at most one integer, and these
are arranged in ascending order. The set operations "insert" and "has" are
performed by messages sent from the calling process to the first process of
the array. Fach process passes on the message to the next until the
appropriate process is reached. An "insert" message received by a process
will cause that process to adopt the inserted integer and the rest of the set
will be shifted one place along the array of processes. A "has" enquiry
received by an appropriate process will send a "true" or "false" response to
the calling process. ‘Tt is not clear how "delete" would be implemented in

Hoare's algorithm,

Now that we have the concept of processes in PROLOG, can we reproduce

the above behaviour in our formalism?

Suppose that the "set" data type is required, having fhe following

operations:

insert: integer x set -> set.

Inserts the integer into the set, having no effect if already present.

delete: integer x set -> set.

Removes the integer from the set, having no effect if already absent.

-y

22,

has: integer x set -> boolean.

Finds whether or not the integer is in the set.

Suppose further that the set is to, be represented by an ordered list
(1ike Hoare's). Example 4 shows the conventional PROLOG program to implement

this data type.

Example 4

insert(m,NIL,m,NIL) <-
insert(n,n.x,n.x) <~
insert(m,n.x,n.y) <~ n < m & insert(m,x,y)

insert(m,n.x,m,n.x) <- m < n

delete(m,NIL,NIL) <-
delete(n,n.x,x) <-
delete(m,n.x,n.y) <~ n < m & delete(m,x,y)

delete(m,n.x,n.x) <~ m < n

has (m,NIL,FALSE) <-
has(n,n.x,TRUE) <-

has(m,n.x,t) <~ n < m & has(m,x,t)
has(m,n.x,FALSE) <- m < n

" Here, the representation is a term (using NIL and the "." functor) and
the operations are procedures. We can invert this solution so that the
ordered list is represented by processes and the operations constitute a term

ha list of commands) . This program is shown in example 5.

- .Rxanmple 5

empty(insert(m).x,y) <~ item(m,x,w) & empty{(w?,y)
empty(delete(m).x,y) <~ empty(x,y)
empty(has(m).x,FALSE.y) <~ empty(x,y)

empty (TRUE .x, TRUE.y) <~ emptw(x,y)

empty (FALSE.x,FALSE.y) <~ empty(x,y)

item(n,insert(n).x,y) <~ item(n,x,y)
item(n,insert(m).X,insert(m).y) < n<mn & item(n,x,y)
item(n,insert(m).x,y) <- m < n & item(m,x,w) & item(n,w?,y)
item(n,delete(n).x,x) <-

item(n,delete(m).x,delete(m).y) <~ n < m & iten(n,x,y)

item(n,delete(m).x,y) <- m < n & item(n,x,y)

-y

23.

item(n,has(n).x,TRUE.y) <~ item(n,x,y)
item(n,has(m).x,has(m).y) <~ n < m & item(n,x,y)
item(n,has(m).x,FALSE.y) <~ m < n & itemn(n,x,y)
item(n,TRUE.X,TRUE.y) <~ item(n,x,y)
item(n,FALSE.x,FALSE.y) <- item(n,x,y)

When the goal <~ empty(x,y) is executed, the list of commands x will
carry out the set operations, producing y as a list of responses. For

example, if x is
has(2).insert(2).insert(3).has(2).has(3).delete(3).has(3).x"
y will be
FATLSE .TRUE.TRUE .FALSE.y'

Bach element of the set is represented by a process which is executing
an item call. They communicate by arguments of which one process is an
eager consumer of the previous process's output. Both commands and responses
are passed along the sequence of processes via these shared arguments.

Suppose that the set contains 2, 3 and 5, then the situation is;
item(2,x,a) & item(3,a?,b) & item(5,b?,c) & empty(c?,y)
If x is instantiated to insert(4).x' +then a will be bound to insert(4).a' ,
theﬁfb to insert(4).b' :
item(2,x',a') & item(3,a'?,b"') & item(5,insert(4).b',c) &
enpty(c?,y)

The item(5,...) process will now cause a process to be created for the new

Ateme
item(2,x",a') & item(3,a'?,b') & item(4,b'?,d) & item(5,4%?,c) &
empty(c?,y)

If x' is now instantiated to delete(3).x" then this command will be passed
on by binding a' to delete(3).a" :

item(2,x",a") & item(3,delete(3).a",b') & item(4,b'?,d) &
item(5,d%,c) & empty(c?,y)

The process executing item(3,...) will now finish, binding b' to a" and

hence deleting 3 from the set:

item(2,x",a") & item(4,a"?,d) & item(5,d?,c) & empty(c?,y)

24,

The only difference in behaviour between examples 4 and 5 is that in
example 4, a "has" enquiry proceeds along the 1list only until the required
item is found. In example 5, the "has" command is passed along the list as
far as the item concerned, then a "TRUE" response is passed along the rest of
the list, Ideally, as soon as a response is generated, there should be no
further execution. Hoare's solution sends the "TRUE" or "FALSE" response

direct to the calling process as soon as it is generated.

To obtain an approximation to this more desirable behaviour in our
formalism, we need the output list of responses to be available to all of the
item calls. Then each process has the option of instantiating either this
response list or the input list of the next process as before. To permit
this, we need to use control alternatives having different logic so that a
process can skip any bindings made to the response list by other processes.

We end up with example 6, which will (currently) run on IC-PROLOG.

Example 6

B

[empty(insert(m).x,ut.p) item(m,x,w,u.p) & empty(w?,u.p),

A
|

empty (insert(m).x,u?.p) empty (insert(m).x,p)]

1

[empty(delete(m).x,ut.p) <
empty (delete(m).x,u?.p) <

empty (x,u.p),
empty(delete(m).x,p)]

[empty (has(m).x,u?,p) <~ u = FALSE & empty(x,D),
empty(has(m).x,u?.p) <~ empty(has(m).x,p)]

.

[item(n,insert(m).x,y,ut.p) <
m=n
THEN item(n,x,y,u.p)
ELSE(n < m
THEN(y = insert(m).z &
item(n,x,z,u.p))
ELSE(iten(m,x,w,u.p) &
item(n,w?,y,u.p))),
item(n,insert(m).x,y,u?.p) <~ item(n,insert(m).x,y,p)]

25.

[item(n,delete(m).x,y,ufp) <-

m=n
THEN y = x .
ELSE(n < m

THEN(y = delete(m).z &
item(n,x,z,u.p))
ELSE item(n,x,y,u.p)),
item(n,delete(m).x,y,u?.p) <- item(n,delete(m).x,y,p)]

[item(n,has(m).x,y,ul.p) <=
m=n
THEN(u = TRUE &
item(n,x,y,p))

ELSE(n < m

THEN(y = has(m).z &
item(n,x,z,u.p))

ELSE(u = FALSE &

item(n’x’y’P)))’
item(n,has(m).x,y,u?.p) <~ item(n,has(m).x,y,p)]

7’Above, each procedure has an alternative for use when the response list
is instantiated (u?.p), which skips the instantiated element u. When this

argument is an unbound variable, the usual procedure is used,

Obviously, we are not restricted to lists; other data structures can
equally be represented by processes. For example, we can represent a set

by an ordered binary tree of processes:

26.

providing each item with one input 1list and two output lists, one for each
subtree, plus the response list:
item(n,x,1,r,D) .

An item receives a command on its input list x and deals with it if possible.
The process will either instantiate the respbnse list p or pass on the command
to its left or right subtree -~ according to the value - by instantiating 1 or

r respectively. Again, empty has one input list x:

empty(x,D)

M

o

27.
CHAPTER 2

TRANSFORMATION OF LOGIC PROGRAMS

'

Program transformation is essentially the process of converting an
inefficient program into one which is more efficient but generally less clear.
This is done in a systematic manner which preserves the supposed correctness
of the original, Program synthesis is similar except that the original is a

specification and not considered runnable.

After considering the origins of program synthesis and transformation,
we shall investigate the transformation of Horn clause programs in some
detail. We show how control annotations may be used to partially automate
the transformation and suggest that this approaches the compilation of

annotated logic programs.

Our objective shall be: given an algorithm A, expressed as a logic
component L and a control component C (i.e. A =1 + C), create a new logic
component L', such that A = L' + (default control strategy).

2.17 Barly work in program transformation and synthesis

We shall briefly consider two systems: that of Burstall and Darlington
[1] and that of Manna and Waldinger [17,187]. Both of these derive recursive

programs by the use of a recursion introduction or "folding" rule.

Burstall and Darlington's system

In this system, both the specification language and the target language

are recursion equations. There are several rules for transforming a progran
in this language into a more efficient one. These are:
Definition.

Define a new recursion equation for an expression L, of the form L <= R,

Instantiation.

Create a substitution instance of an existing recursion equation.

28.

Unfolding.
Replace an occurrence of an expression in the rhs of a recursion equation by
the rhs of another equation with the first expression as its lhs. i.e. if
I <= R and L' <= R' already exist, and L' occurs in R: replace L' in R by

R' giving R", the new equation is L <= R"

Folding.
Replace an occurrence of an expression in the rhs of a recursion equation by
the lhs of another equation with the first expression as its rhs. i.e. if
L <= R and L' <= R' already exist, and R' occurs in R: replace R' in R by

L' giving R", the new equation is L <= R" ,

Abstraction.
Replace parts of an expression, in the rhs of an equation, by variables,
Define these variables in a where clause.

e.g. A<=b+ Db Dbecomes A <=x + X where x =D .,

Laws.
Apply rewriting rules to the rhs of an equation to express information

about commutativity, associativity, etc.

_The strategy used to transform programs is firstly to make definitions
.and instantiations, Then each instantiated lhs is repeatedly unfolded.
Finally, laws and abstraction are applied and the equations repeatedly folded.
Examples in [1] and [7] illustrate the use of these rules in "intertwining"
T PLORTAS , Often, programs comprising several recursions are transformed
into equivalent programs with a single recursion, preferably linear. We
Will see examples of such transformations in the Horn clause formalism later

in this chapter.

A semi-automatic system was implemented by Burstall and Darlington [1].
This accepted the original recursion equations including those specially
defined, a sét of instantiated left hand sides, and a set of rewriting rules,
The system would search for all possible transformations of the specified

lhs's and print the resulting equations.

More recently, Feather [9,10] has implemented a more sophisticated
transformation system (ZAP), based on the above rules, which is designed to
transform large programs. ' To this end, the system is claimed to embody a
workable blend of automation and user guidance. The user provides the

intuitive guidance at a high level while the system performs the more mundane

g

29,

tasks and also supplies defaults to aid the user.

Feather's system uses a "metaprogram” to control the transformation of a
"protoprogram", the latter comprising 4he original recursion equations. The
metaprogram consists of a sequence of special commands which considerably
reduce the search required to find a transformation. The user supplies each
instantiated lhs together with a pattern for the desired transformed equation.
Commands are provided for specifying which functions are to be used for
unfolding and which may occur in the transformed equations, A number of
"default generators" are provided: these make use of user-supplied type
information for such purposes as automatically generating the instantiated
lhs's., To demonstrate the effectiveness of the system, it has been used to

transform various large programs, such as a text formatter [117].

Manna and Waldinger's systenm

Manna and Waldinger [17,18] have de&eloped a method for synthesizing
recursive programs from specifications. They make use of a special purpose
specification language, intended to facilitate the natural description of
the problem, while their target language is a variant of Lisp. The techniques
have been implemented in their SYNSYS system.

.- This system differs from that of Burstall and Darlington mainly in its
specification language, which may be extended at will and adapted to suit a
particular application, Transformation rules are supplied for each construct
in the specification language, to transform it eventually into a "primitive
program". The price paid for this rich, extendable specification language
is the need for a large number of transformation rules; c.f. the six

transformation rules of Burstall and Darlington.

Another feature of the SYNSYS system is that it is fully automatic and
does not benefit from any guidance on the part of the user as do the other

systems considered.

2,2 Standard form logic program derivation

Burstall and Darlington's transformation techniques soon inspired
attempts [2,3,4,6,13] to synthesize Horn clause programs from specifications
in the standard form of logic. The specification comprises a set of axioms

defining the relation to be computed; logical deduction is used to derive a

-y

30,

set of computationally useful Horn clauses, Recursions are introduced into

the derived clauses by a variant of the folding rule.

Hogger [13] treats program constryction as a goal-oriented derivation,
beginning with a single "call" for which a procedure is sought. The derivation
consists of a sequence of applications of rules, each of which is either a
"goal simplification”" or a "goal substitution" rule. The former rule causes
the replacement of the current goal by one which it logically implies. A
goal substitution rule incorporates new information into the current goal from
the specification axioms by activating a "call",. The final goal constitutes
the body of the derived procedure, whose head 1s the current substitution
instance of the initial goal. The resulting derivation resembles a
conventional top-down logic program execution in many respects. However, a
call need not be atomic, and the replacement of a call by a "body" is determined
by one of several goal substitution rules. Hogger gives a number of inference
rules, both for goal substitution and simplification, which have proved to be

useful in the derivation of Horn clause programs.

Clark [2,3] also regards program derivation as the top-down symbolic
execution of a standard form specification, though in a less formal manner;

however, he makes greater use of terms in the derivation process.

The important properties of this kind of program derivation are the high
leved nature of the specification language and the fact that all derivation

- wules have a logical justification,

2.3 Horn clause program transformation

We now consider transformation in which both spécification and target
languages are Horn clauses. This is a speclal case of logic progran
derivation, as outlined in the previous section. The specification language
is, of course, less powerful but the transformation rules are accordingly
simpler. There is a close similarity between (Horn clause - Horn clause)
transformation and (recursion equation - recursion equation) transformation;
however, Horn clauses provide a slightly richer specification language than

pure recursion equations,

Transformation rules

The four principle rules are described below:

s powr

31.

Symbolic execution.

This corresponds directly to the unfolding rule for recursion equations. It
is identical to the execution mechanism for Horn clause programs, except that
"primitive” predicates are not normally executed. One call of the goal clause
is selected and unified with the head of a procedure, which has no variables in
common with the goal clause. The call is replaced by the procedure body and
the unifying substitution applied. To ensure that variables are distinct,

we superscript the variables of a procedure by the number of the level at which

the procedure is invoked.

Laws.
As in recursion equations, we make use of lemmas to express information about

certain predicates. Such a lemma is an equivalence of the form
3}(1. . -gxm[C(le oo ’Xm’yl’ L !yp>:| <=>

e RRRE M A Co FRRRIE S CRRRRTP AN

-

where C(Xl"

xis and MR denote variables., We use the equivalence to rearrange the current

..,yp) and C'(X',...,yp) represent conjunctions and the x,s,

goal clause as follows. Suppose the initial goal atom was GO, the body of the
currerit goal clause is Gn and the current substitution is 8: the derived clause
so far is Goé?<é Gn . If the conjunction Gn can be split into two parts Gnl

and G_,, and G, matches with C(Xl,...,x

1 mY1ree
variables in Gn1 which do not appear either in an or in GOB, then we can

,yp) such that the X8 match

replace G . in G by C'(xi,...,xﬂ,yl,...,yp) » Where xj,...,x} are new
vaifables, to give a new current goal clause with body Gg.

e.g. to express the associativity of TIMES, use the equivalence

Ix[T1MES (r,s,%) & TIMBS(x,t,u)] <>
Ix*[TIMES(s,t,%x') & TIMBES(r,x",u)]

The application of laws is easier in the recursion equation formalism
since this embodies only functions; there is no need for existentially
quantified variables for intermediate results. The above lemma would be

expressed as

TIMES (TIMES (r,s),t) = TIMES(r,TIMES(s,t))

Functionality.
We can obtain the same effect as the abstraction rule of Burstall and
Darlington by using information about the functionality of predicates to

delete redundant atoms from the current goal clause. If we know that the

oy

32.

predicate p is a function of its first m arguments, we have the equivalence

p(tl,...,tm,rl,...,rn) & p(tl,...,tm,sl,...,sn) <->

p(tl,...,tm,rl,...,rn) &1 =8y & ... &1 =8/

Using this equivalence, if we find two atoms~’p(tl,...,tm,rl,...

p(tl,...,tm,sl,...sn) in the current goal clause, we can delete the second

,rn) and
atom and unify the pairs of terms <r1,sl> y oo ey <rn,sn> .

Folding.
This is analogous to Burstall and Darlington's rule for recursion equations.

Suppose that one of the procedures for predicate r is

r(tl, LR ’tl’l) <~ C(le oo 9Xm!y19 LR ryp)

where y.,...,y. are all of the variabies which occur in the terms t ,...,t ,
1 D 1 n

and Xq,...,X are the variables which do not; C(Xl,...,yp) represents a

conjunction. Tf this is the only procedure for r or if all procedures for

r treat disjoint tuples of head arguments, then we have the equivalence
r(tl,...,tn) <F>’3Xl e me[c(xl,...,xm,yl,...,yp)]

We search the current goal clause in the same manner as described for "laws",

searchlng for a part which unifies with C(Xl,...,xm,yl,...,y) such that
XqyenesXp match variables which do not appear elsewhere in the current goal

clause or in the current substitution instance of the initial goal atom

If such a part is found, we replace it by the atom r(tl,...,tn) and apply

-sre unifying substitution.

This rule is more rigorously defined in [3].

Transformation strategy

In general, we adopt the same strategy for applying the rules as that

suggested for recursion equations [1]:

1) The user specifies the progran procedures including any specially

defined procedures.
2) The user specifies a number of suitably instantiated goal atoms.

3) The goal atoms are each symbolically executed repeatedly, using an

arbitrary computation rule.

L) The symbolic execution is frozen.

33.
5) Laws are optionally applied.

6) Functionality simplification is optionally performed.

7) TFolding is performed, possibly repeatedly, until a recursion is

obtained.

8) The try order of calls in the derived procedures is rearranged,

and the procedures ordered for computational use.

The intelligence of the user may be required in each of these steps.

Some examples

We consider first an example adapted from [7] in which a doubly recursive
program is transformed into a linear recursive programn. The procedure to be
transformed is for flatten, where flatten(t,1) holds when 1 is a list of the
frontier of t, an unlabelled binary tree. Example 7 gives the simple program
for flatten. | ‘

Example 7

flatten(tip(u),u.NIL) <-
flatten(tree(s,t),z) <~ flatten(s,x) & flatten(t,y) & append(x,y,z)

append (NIL,y,y) <-
append (u.X,y,u.z) <~ append(x,y,z)

We follow Darlington and Waldinger and consider three cases for the
structure of a tree: 1) tip(u), 2) tree(tip(u),t), 3) tree(tree(r,s),t) .
For the first case, a procedure already exists. For each of the other two
cases, we provide an instantiated goal atom and symbolically execute each,

At the end of the second derivation, we apply the law of associativity of

append and then fold twice with flatten. The law is expressed as

Ax[append(r,s,x) & append(x,t,u)] <->
BX '[append(sf!tvx ') & append(r,x ' 7u>:|

The derivation proceeds thus:

9 <~

s eee s O

...__‘--o_----- L e O R L L]
g :
[oN) n

R
o
'_)
%

34,

flatten(tree(tip(uo),to),zo)

flatten(tip(uoo,xl) & flatten(to,yl) & append(xl,yl,zo)

flatten(to,yl) & append(uO.NIL,yl,ZO)

flatten(t0,y’) & append(NIL,y',20)

flatten(tO,ZB)

flatten(tree(tree(ro,so),to),zO)

flatten(tree(ro,so),xllr& flatten(to,yl) &
1 1 0
append (X ,y,2") |

flatten(ro,xz) & flatten(so,yz) & appendﬁxg,yz,xllr&

flatten(to,yl) & append(xl,yl,zo

2.1 2 0
append (y°,y,x7) & append (x°,%°,2°) &
flatten(ro,xz) & flatten(so,vz) & flatten(to,vl)

flatten

flatten(tree(so,to),XB) & @ppend(XZ,XB,ZO) &
flatten(ro,xz)

flatten

flatten(tree(ro,tree(so,to)),zo)

We end up with the three procedures

flatten(tip(u),u.NIL) <-
flatten(tree(tip(u),t),u.z) <~ flatten(t,z)
flatten(tree(tree(r,s),t),z) < flatten(tree(r,tree(s,t)),z)

35.

after renaming the superscripted variables to improve appearance.

We are justified in performing the two folds with flatten, since the

original procedures provide the equivalences

flatten(tip(u),z) <> z = u.NIL
flatten(tree(s,t),z) <> Jxdy[flatten(s,x) & flatten(t,y) &
append(x,y,z)’]
Our fold steps employ the second of these.

The second transformation above can be shown diagrammatically as follows.

The tips of the fully constructed proof tree are underlined:

flatten

flatten ' flatten

flatten flatten append

append append

Fold
flatten

Fold
flatten

Let us now consider another example, to generate the Fibonacci series,
adapted from [1]. This time we need to supply an auxiliary definition, of

the relation g.

‘po-y

36.
Example 8

£iv(0,s(0)) <
£ib(s(0),s(0)) <- .
fib(s(s(x)),y) < £ib(s(x),u) & fib(x,v) & PLUS(u,v,y)

g(x,y,2) < fib(s(x),y) & £ib(x,z)

Like Burstall and Darlington, we deal with two cases and derive a

procedure for each:

T <= ng,XOZZO)
. 0 . 0
L« fib(s(0),y) & £ib(0,27)
0
y /s(0)
L < £ip(0,2°)
20/2(0)
s O |
0y 0 0 I
<= g(s(x)py 1Z41
< rin(s(sGO)),y0) & £iv(s(x0),20)
O <- fib(s(xo),ufl_& fib(xo,vz) & PLUS(uZ,VZ,yO) &
; fib(s(xo),ZQI
ﬁunctionality
ZO/UZ:)
5 < £ib(s(x0)) & eib(02) & PLUS(ul,v2,y0)
;
$old g
& <= g(xo,uz,vz) & PLUS(uZ,VZ,yO)

The resulting procedures, after renaming superscripted variables, are

g(O,S(O),S<O)> <=
g(s(x),y,u) < glx,u,v) & PLUS(w,v,y)

gy

37.

To compute fib using g, we need the procedures

£1b(0,8(0)) <
fib(s(0),s(0)) <
fib(s(s(x)),y) < eg(x,u,v) & PLUS(u,v,y)

In the third step of the second derivation above, we have made use of the
fact that fib is a function of its first argument, in order to delete a

redundant atom. The effect upon the proof tree is thus:

g
//////// \\E?Q;ﬁ?nctionality
b fib

fib fib PLUS

£i

Fold

A common objective of all of our transformations is to construct each
~Droof tree in such a manner as to find a pattern which can be folded with
the goal predicate. In general, to do this we may need to execute each
rall to a different depth. We may also need to rearrange the proof tree,
as we have seen, by "laws" and "functionality" in order to find a suitable

pattern.

2.4 Automatic branching

In simple cases, we can relieve the user of the need to provide
instantiated goal atoms. Instead, we begin each derivation with a goal
atom containing only variables and construct the search tree from this.
Each branch of the search tree leads either to a failure node or to a
derived procedure. An assertion 1s derived for each success node, while

a recursive procedure is obtained by freezing the construction of each

38.

infinite branch of the search tree.

This automatic generation of "cases" is reminiscent of the default

generators of Feather's ZAP transformation system {9,107,

To illustrate the method, we again use an example adapted from Burstall
and Darlington [17]. Example 9 is a simple program for computing the sum of
the scalar products of two pairs of vectors, each represented by a list of

integers. f(w,x,y,%,n) holds when

n=mwx++y-z

Example 9

f(w,x,y,2,n) <~ samelength(w,x,y,z) & dot(w,x,1) & dot(y,z,m) &
PLUS(1,m,n)

samelength(NIL,NIL,NIL,NIL) <-

samelength(s.w,t.x,u.y,v.z) <- samelength(w,x,y,z)

dot(NIL,NIL,0) <~
dot(u.y,v.z,n) <~ TIMES(u,v,1) & dot(y,z,m) & PLUS(1,m,n)

We will need to use a property of addition, namely that
(r+s)+(t+u)=(r+1t)+(s+u)
SThis is expressed as

IxIy[PLUS(z,s,x) & PLUS(t,u,y) & PLUS(x,y,v)] <>
Ix'Jy'[PLUS(z,t,x') & PLUS(s,u,y') & PLUS(x',y',v)]

The following search tree shows the derivation of new procedures for f:

Py

39.

0 0 0 0 O
<= f(w 2 X Y 32 N)

<~ samelength(wo XquO O) & dot(w O,ll) & dot(yo,zo 1) &

prus(1t, mt, n°

wo/sz. z xo/tz.x2
/ 2 2 ZO/VZ.ZZ

samelength(w2 xz,yz,zz) &

<= dot(NIL,NIL,llz &
2 2.2 2 1
dot(NIL,NIL,n1) & dot(s2 .47, 42.%°,1Y) & dot(v®.y°,v%.2°%,) &

1
PLUS(1 ,m ,n PLUS(l1 n’

A
1

2.2 2 2 2 .2 .-
<~ dot(NIL,NIL, ml) & ¢ <~ samelength(w”,x",y",2") & TIMES(s",t ,13) &

1
PLUS (0, 1", n° dot (w52, n0) & PLus(12,n0,1%) &
/0 ot (W Z,VZ.ZZ) & PLUS(ll IO
< PLUS(0,0,n°)

<~ samelength(w2 xz,yz,zz) & TIMES(SZ,t2,13> &

dot(w ,x m3) & PLU5(13 o 11) &
TIMES(u ,v ,1) & d t(yz, 2 4) &

PLUS(lq,mq,m) & PLUS(1 ,ml,n)

6

[rmmm meeemcnee —ae O

&
=
n

<~ pLus(23,1%,%%) & PLs (3,0t 0) &
PLUS(X5,y5,nO) & samelength(wz,xz,yz,zz) &
2,2 .3 2 2.3
TIMES (s“,t,17) & dot(w™,x",m”’) &

TIMES (v v2 1) 2 o

& dot(yz,z , M

o G E L EE PR P EE TP o LEE P

<= f(wzvxz!yzrzz’y5> &
PLUS(lB,lq,XS) & PLUS(x5,y5,nO) &
TIMES (s,£,1°) & TDES (v ,v2,17)

The first branch of the search tree leads to a base procedure while the second
branch is frozen and folded to give a recursive procedure. The derived

procedures are

4o.

f(NIL,NIL,NIL,NIL,0) <-
£(s.w,t.x,u.y,v.2,n) <~ TIMES(s,t,1) & TIMES(u,v,m) & PLUS(1,m,p) &
£(w,%,y,2,q) & PLUS(D,q,n)

2.5 Annotations to control symbolic execution

Example 9 illustrated a common effect of transformation: that formerly
separate parts of a computation become "intertwined" in the transformed
procedures. But this is exactly the effect obtained when the original

procedures are executed using a coroutining or parallel computation rule.

The intertwined nature of the transformed procedures comes about because
we alternate between branches of the proof tree during the symbolic execution
Thase. If we include control annotations in the original program and use
these to control the symbolic execution, then we will have automated one
further part of the transformation. The user now only needs to provide
guidance in the following areas:

a) Specifying auxiliary relations.

b) Deciding when to freeze symbolic execution.

wc) Supplying information about laws and functionality.

d) Guiding the search for a fold.

€) Rearranging and possibly restructuring the transformed procedures

for computational use.

Tn section 2.6 we shall see several examples of the use of coroutining
annotations in transformation, while in section 2.7 we shall consider

parallel annotations.

2.6 Coroutining in transformation

None of the remaining examples in this chapter requirés the application
of laws or functionality; each consists simply of symbolic execution followed
by folding. We begin with an annotated program and "compile" this into a

T

sequential program which has the same "intertwined" behaviour.

We begin with a simple example. Example 10 is a program to compute the

sum of squares of the integers in a list.

41,

Example 10

sumsq(x,n) <- sum(y,n) & sq(x,y4)

sum(NIL,0) <- .
sum(m.x,p) <~ sum(x,n) & PLUS(m,n,p)

sq(NIL,NIL) <-
sq(m.x,n.y) <- TIMES(m,m,n) : sq(x,y)

Here, sumsq(x,n) holds when

n = :E:: k2

k in x

In the search tree for this transformation, the clause bar is treated as a
normal "&". Note also that the "primitive"” calls - in this case those for
PLUS and TIMES - are not executed.

<- suqu(xO,n?)

<~ sum(yl,no) & sggxolei}

0
Xl/NIL 042 2 LR P
L /NTL x /m”.x" oy /n.y

. A <~ sumfnz.vz,ng) & TIMES(mZ,mZ,nZ) & sq(xz,yz)
nU/O

[<= sun(y°,n°) & PLUS(n%,n°,n°) &
2 2 2y 2 2
TIMES(m”,m",n") & sa(x",v7)

sumsq

O-vcenmetemmonanen
o]
}.._l
u

<~ sumsq(xz,nB) & PLUS(nZ,nB,nO) &
TIMES(mz,mZ,nZ)

The resulting procedures are

sumsq (NIL,0) <-
sumsq(m.x,n) <- TIMES(m,m,p) & sumsq(x,q) & PLUS(p,q,n)

It is a general principle of transformation that the clause bar should

be ignored, since it obstructs the required alternation between branches of

the proof tree. This makes no difference in the example above but is

h2.

significant in more complex transformations. For example, Clark's program

[3] for the eight queens problem contains a clause bar which is ignored in

his transformation.

&

We now transform the program of example 1,

<- sumdeSq(xO,nO)

<- dbl(yl,zl) & sg{xolxsz & sum(zl?,no)

XS/NIL 02 2 A2
A x /m”.x" y /.y
~ dp1(NIL,z)) & <- dbl(‘el e TIMES(2 i) e
Sum(zl?’nO) Sq(x Y) & sum(z ?,n)
1
7" /NIL 0 zl/nB.yB
<- sum(NIL,n)
nO/O <- PLUS(nZ,nZ,nB) & dbl(yz,y3> &
$J TOES(n°,n°, 1) & sq(x7,¥°) &
sum(nB.yB,nO)

> <— PLUS(nZ,nZ,nB) & dbl(yzzyfg &
2 2 2 2 2

TIMES(yn7) & sq(x7,y7) &

sum{x ,n) & PLUS(nB,nq,nO

o}
ﬁold sumdblsq
5

<- sumdblsq(x n) & PLUS(n n n3) &
TIMES(m ,m ,n) & PLUS(n ,n”,no)

The transformed procedures are .
sumdblsq (NIL,0) <-
sumdblsq(m.x,n) <~ TIMES(m,m,p) & PLUS(p,p,q) & sumdblsq(x,r) &

PLUS(q,r,n)

A more interesting example is the simple sort program of example 11,

gy

43.
Example 11
sort(x,y) <- perm(x,y) & ord(y?)

perm(NIL,NIL) <~ .

perm(u.x,v.z) <- delete(v,u.x,y) & perm(y?,z)

delete(u,u.x,x) <=

delete(v,u.x,u.y) <~ delete(v,x,y)

ord (NIL) <~
ord (u.NIL) <-

ord(u.v.x) <- u € v & ord(v.x)

Here, sort(x,y) holds when list y is list x sorted; perm(x,z) holds
when lists x and z are permutations; delete(v,x,y) holds when list y is x

with v removed; ord(x) holds when list x is ordered.

The coroutining within the sort procedure has the effect that each
permutation is rejected as soon as it is found to be unordered; the whole
permutation need not be generated. The coroutining within the perm procedure
is not necessary in normal execution, However, this must be included in
transformation since otherwise the delete call would run indefinitely without
making the jump that is needed. It is for similar reasons that we ignore

theiplause bar in transformation.

The transformation proceeds thus:

<L sortfxozzog
<- Eermgxo,xoz & ord(yo?)
0,2 2 0,2 2
u.x© oy /

<= delete(vz,uz.xz,yz) & perm(yz?,zz) &
ord(vz.zz)

o vy

\\\\\\\b <- delete(vz,xz,yB) &

Derm(uz.ys,zz) &
ord(vz.zz)

Z/uq.x4 ZZ/V4.24

2, 4 4
< ord{vz.NILz <~ delete(vq,uu.xq,yq) & AR

perm(yq?,zq)‘& delete(vz,xz,yB) &

<
O ord(vz.vu.zq) delete(vq,u .y3,y4) &
perm(yq?,zu) &
d <- delete(vq,uq.xq, ﬁl & ord(vz.vq.zﬁ)
§ perm(yq?,zq) &
i V2 v & 0 < delete(vz,xz,yB) &
i ord(vq,zq) § delete(vq,u y3,y4) &
§ ; perm(y ?,z;) &
ﬁold perm { v2~< v &
§ § ord(vq.zq)
é <~ perm(uq.xq,vq.zq) & g
é v2 < vq & Fold perm
é ordﬂvu.qu é
’ § é <~ p*rm(u y3 4.Z4) &
%old sort § delete(v o X ,y3) &
§ § v2 £v &
é <~ sort(u 4, v, 4) & § ordQVL’L Z42
v L
ﬁold sort
é <~ sort(u y3 . 4) &

delete(v X ,y3) &

2
v £V

-y

4s.

Transformed procedures:

sort(NIL,NIL) <-
sort(v.NIL,v.NIL) <- .
sort(w.u.x,w.v.z) <- sort(u.x,v.z) & w < v

sort(u.x,w.v.z) <~ delete(w,x,y) & sort(u.y,v.z) & w < v

In the above search tree, two branches each lead to a success node while
two infinite branches are each cut to give a recursive procedure. Notice
that on each of these branches we must continue executing until the ord call
is activated, by which time the perm call has been executed too far. Hence

the need for a fold with perm prior to the final fold with sort.

An interesting feature of this transformed procedure set is its
nondeterminism. This reflects the behaviour of the original coroutined sort
procedure, where backtracking occurs upon generating the firsi unordered
member of a permutation. The first of the recursive procedures for sort
corresponds to the case where the first element of the first list is its
minimum, The second corresponds to the case where the minimum is elsewhere
in the list.

Another point to note is that folding requires the use of the occur check.
To fold each unfolded conjunction with sort, we must check that the second
argument of the perm call unifies with the argument of the ord call. The
* L L4 4

“wouer check is needed so that the unification of <z ,v .z > fails.

The next example we shall consider illustrates the need for auxiliary

=Tgtions. Sometimes a goal clause cannot be folded because it contains a

conjunction which, although similar to some procedure body, does not unify
il 1. If the conjunction and the procedure body are both instances of
some more general conjunction, then we should generalize the original

procedure and repeat the transformation using this.

Example 12
primes(z) <- integers(2,x) & pr(x?,NIL,z)
integers(u,u.x) <- PLUS(u,1,v) & integers(v,x)

pr(u.x,y,z) <~ diVbY(u'y,T) & Pr(X1Y9Z>
pr(u.x,y,u.z) <- divby(u,y,F) & pr(x,u.y,z)
divby(u,NIL,F) <~

divby(u,v.y,T) <= TIMES(v,w,u)

divby(u,v.y,r) <= = TIMES(v,w,u) & divby(u,y,r)

46,

This is a program for generating an infinite list z of prime numbers
by the goal <~ primes(z) . It works by coroutining between the generation
of an infinite list of integers and checking the list for "primeness".
integers(u,x) holds when x is a list &f all integers in ascending order,
starting at u; pr(x,y,2z) holds when z is a list of the integers from list
X which are deemed to be prime by checking against the list y of primes
accumulated so far; divby(u,y,r) means r is T (true) iff u is divisible by
any of the integers in list y. This algorithm will be discussed further in

section 2.8.

In order to transform this program, we need to generalize the primes

procedure by defining primes as an instance of gprimes:

primes(z) <- gprimes(2,NIL,z)

gprimes(n,y,z) <~ integers(n,x) & pr(x?,y,2)

We can now go ahead and transform gprimes:

. 0O 0 0
<- gprimes(n ,y ,z)

<- integers(no,xl) & Pr(Xl?,yOoZO>

1,0 _ 2
X /n .x

<= PLUS(nO,l,VZ) & integers(vz,xz) &‘pr(no.xz,yo,zo)

O/nO,ZB

< PLUS(n,1,v%) &
integer§ﬁvz,le &
divby(no,yO,F) & p;(xz,nouyo,z

< PLUS(nO,l,VZ) &
integers(vz,xz) &
divby(n’,y°,1) & pr(x*,y°,2%)

2

Onmrmmebrfen e m e e
Omememe T mm e e s

old gprimes o0ld gprimes
< gprimes(vz,yo,zo) & <~ gprimes(vz,no.yo,ZB) &
0 2 . 0 0 0 2 . 0 0
PLUS(n ,1,v) & divby(n ,y ,T) PLUS(n",1,v") & divby(n ,y ,F)

The transformed procedures are

* .

gprimes(n,y,z) <- PLUS(n,1,v) & divby(n,y,T) & gprimes(v,y,z)
gprimes(n,y,n.z) <~ PLUS(n,1,v) & divby(n,y,F) & gprimes(v,n.y,z)

Finally, for effective computational uée, these should be restructured to a

conditional:

gprimes(n,y,x) <~ PLUS(n,1,v) & divby(n,y,r) &
r=T
THEN gprimes(v,y,x)
ELSE(x = n.z &

gprimes(v,n.y,z))

We conclude this section with a tree manipulation program, adapted from
[7]. ©Example 13 counts the number of tips in a binary tree by finding the
length of the list representing the flattened tree. We use the flatten
procedures derived in example 7. count(x,n) holds when tree x contains n

tips.

Example 13
count(x,n) <- flatten(x,y) & length(y?,n)

flatten(tip(u),u.NIL) <~
flatten(tree(tip(u),t),u.z) <~ flatten(t,z)
flatten(tree(tree(r,s),t),z) < flatten(tree(x,tree(s,t)),z)

length(NIL,0) <-
length(u.x,s(n)) <~ length(x,n)

L8.

<~ count(xo,no)

<—£f1atten(xo,y1),& 1ength(yl?,no)

xo/tree(tree(rz,sz),tz)

<~ flatten(tree(rz,tree(sz,tz)),y1),&
length(yl?,an

1
Fold count
5

< count(tree(rz,tree(sz,tz)),nO)
Xo/tree(tip(uz),tz)
1,2 2

y /o2
flatten(tz,zz) & length(uz.zz,no)

R

< flatten(t2,7%) & length(z,n0)

old count

3
b

%)

<~ count(tz,n

The transformed procedures are
count(tip(u),s(0)) <-

count(tree(tip(u),t),s(n)) <~ count(t,n)
count(tree(tree(r,s),t),n) <- count(tree(r,tree(s,t)),n)

2.7 Parallelism in transformation

We can "compile" programs utilizing parallelism in the same manner as
those already considered, namelygby controlled symbolic execution and folding.
We use the mechanism for pseudo-parallel execution that is described in

section 1.4.

We begin by compiling the program of example 3 to an equivalent

sequential program,

hg,

<- f nO zo

<= oheck(xlg & front(no,xlf,zo)

< (p1(x1) // ql(x})) & fromt(n’,x™4,2°)

O/s(nB) xl/uB.x3 ZO/uB.z3

<~ p1(NIL) // q1(NIL) <- (pl{uB.x32 // ql(u3.x3)) & front(nB,XB,ZB)

(p(:2) & p1(x7)) // dl(v2.x7)) &

front(nB,XB,ZB)

<- gl(NIL))y <

0

(o(x2) & pL(2D)) // (a(v) & 1(x))) &

Q <=
g front(n,x,2°)
%old check
é <~ oheck§x32 & p(u3) & q(u3) & front(n3,x3,z3)
%old £
- o <« £(n,2°) & p(u’) & q(uv’)

The transformed procedures are

£(0,z) <
f(s(n),u.z) <= p(u) & q(u) & f(n,z)

Example 14 shows the program for Kowalski's "admissible pairs" problem
[167], suitably annotated to give the desired behaviour. This program

generates a pair of infinite lists possessing the "admissible" relationship.

Example 14
adn(x,y) <- double(x,y) // triple(x,y)
double(u.x,v.y) <- TIMES(2,u!,v) & double(x,y)

triple(u.v.x,w.y) <= TIMBES(3,w!,v) & triple(v.x,y)

50.

The "!" annotations ensure that the process executing double suspends
until its incoming list is instantiated; likewise with the process executing

triple. We can "compile" this program using the normal parallel mechanism,

€

admgxolzog

0 <~
o <- double(xo,yo) // triple(XOyYO)
0,2 2
X u .X
0,2 2
y /Ny
o <~ (TIMES(Z,UZ!,VZ) & double(xz,yz)) // triple(uz.xz,vz.yz)
K2/ %0
§ < (TIES(2,u°1,v2) & double(v2.x2,32)) //
L (TIMES(3,v71,vO) & triple(vo.x0,30))
Fold adm
o <- adm(\g.xs,yz) & TIMES(2,u°,v°) & TIMES(B,VZ,VB)

The transformed procedure is

-

adm(u.v.x,w.y) <- TIMES(2,u,w) & TIMES(3,w,v) & adm(v.x,y)

2.8 Processes as data structures

There 1s a class of programs, annotated for coroutining or parallelism,
which cannot be "compiled" using the techniques we have considered. These
are those programs which use the methodology of "processes as data structures"
that we discussed in section 1.6. For example, consider the problem of
generating an infinite list of prime numbers. Example 15 shows the natural

way of programming this in IC-PROLOG.

e

51.

Example 15
primes(z) <- integers(2,x) & sift(x?,z)
integers(u,u.x) <~ PLUS(u,l,;) : integers(v,x)
sift(u.x,u.z) <~ sieve(u,x,y) & sift(y?,z)

sieve(u,v.x,y) <~ TIMES(u,w,v) : sieve(u,x,y)

sieve(u,v.x,v.y) <~ =~ TIMES(u,w,v) : sieve(u,x,y)

This is the algorithm of Eratosthenes' sieve; an infinite list z of
primes is generated by the goal <~ primes(z) . Neglecting the coroutining
annotations, it can be seen that a list of all the integers is generated and
then sifted. The sifting consists of removing from the list all multiples
of the first number, which is a prime, and then sifting the resulting list
in the same manner, recursively. The coroutining means that we need not

wait for the infinite list to be generated before obtaining results.

The coroutined program has the same behaviour as that given by Hoare [12]
in his Communicating Sequential Processes notation. There is essentially
one process for each prime generated so far; this process is engaged in
removing multiples of its prime from its input list and passing the resulting
list to its successor. Any number which gets through the entire list of

processes is a prime, and a new process is created for that number.

Suppose that the primes 2, 3 and 5 have been generated so far: the

situation is
integers(6,x) & sieve(Z,k?,a) & sieve(3,a?,b) & sieve(5,b?,c) &
sift(c?,2z)
At the next step, the integers process generates the number 6, This only
passes as far as the first sieve process which discovers that it is divisible
by 2:
integers(7,x') & sieve(2,x'?,a) & sieve(3,a?,b) & sieve(5,b?,c) &
sift(c?,2)
Now the integers process generates 7, which passes through all of the sieves
and creates a new sieve process:
integers(8,x") & sieve(2,x"?,a"') & sieve(3,a'?,b') &
sieve(5,b'?,c') & sieve(7,c'?,d) & sift(d?,z")

The output list z has been instantiated to 7.z' , thus generating 7 as the

next prime.

g

52.

If we symbolically execute the above program, we fail to obtain a
pattern of atoms that can be folded. This is a consequence of the "inherent
parallelism” of the program: the list of "primes generated so far" is
represented by a list of sieve processés. We must reformulate the program
so that this list is represented by a term in the conventional manner. The
reformulated program has appeared earlier, aé example 12, in which each

integer found to be prime is added to the head of an explicit list.

In both formulations of the program, each candidate integer is checked
for divisibility by each of the primes so far generated. The programs differ,
however, in the order of checking: example 15 checks in ascending order,
example 12 in descending order - a less efficient algorithm, In order for a
program of the form of example 12 to perform the check in ascending order, we
would need to add each newly discovered prime to the tail of the prime list.

The second procedure for pr would become
pr(u.x,y,u.z) <- divby(u,y,F) & insert(u,y,w) & pr(x,w,z)
where

insert(u,NIL,u.NIL) <-

insert(u,v.y,v.z) <- insert(u,y,2)

This is still a different algorithm from that of example 15, since more
work is required to insert the new prime, depending upon the length of the
list, It appears that coroutining is essential to obtain the optimum
algorithm,

Clark [3] describes a program for the eight queens problem, which he
reformilates in a similar manner in order to eliminate parallelism, His

original program contains the procedure
safe(u.x) <~ notake(u,x,1) // safe(x)

to check that a list of queen positions is "safe". As the computation
proceeds, parallel processes are created, each representing a queen that has
been placed; each process is engaged in checking its queen against all
subsequently placed queens. To obtain a sequential program, the 1list of
already-placed queens is made explicit as a term and the following procedures

used:

safe(x) <- safepair(NIL,x)

safepair(y,u.x) <- notake(u,y,1) & safepair(u.y,x)
safepair(y,NIL) <

f

53.

Despite the different representation, the behaviour of the two programs
is almost identical, although it is slightly overspecified in the sequential,

lower-level program.

CHAPTER

TMPLEMENTATION OF A COMPILATION SYSTEM

I

We have seen in chapter 2 that annotated logic programs can be "compiled"
by controlled symbolic execution followed by folding. In this chapter we
shall describe a system (SCALP) which has been implemented to compile programs

with coroutining annotations by this method.

Vasey [20] has written, in Waterloo PROLOG, an interpreter for sequential
logic programs. Our system is based on this, but includes two novel features:
dataflow coroutining and folding. Later in the chapter we suggest how the
system may be extended further to incorporate pseudo-parallelism in the

symbolic execution phase.

3.1 Use of the system

To perform a transformation, the user creates a file containing a number
of clauses of Waterloo PROLOG; this is loaded, together with the SCALP progran,
into the PROLOG interpreter. Four items of information are given in this

file, described below:

a) Set of clause assertions.
These represent the clauses of the program to be transformed. Fach clause
assertion represents all of the Horn clauses for one predicate, including any
annotations; the restrictions quoted in section 1.3 concerning the use of
annotations must be observed. The exact form of the representation is

described in the next section.

b) Set of primitive assertions.
These specify which predicates are "primitive", i.e. not to be executed during
the transformation. These usually coincide with the "built in" predicates of
PROLOG. e.g.

primitive(PLUS)
primitive(TIMES)

c¢) Foldorder assertion.

This names a list of predicates, specifying the order in which folding is to

55.

be attempted. It is the means by which the user controls the folding phase.
The list always begins with the top level predicate, followed by successively
lower level predicates. For example, in the program of example 10, we wish

to fold the goal clause
<~ sun(y,n) & sq(x,y) & TIMES(m,m,p) & PLUS(p,n,q)

To obtain the desired recursive procedure, we ought to fold with sumsq rather
than with sum or sq; the last two would merely undo the work of the symbolic

execution. Hence, we would provide the assertion
foldorder(sumsq .sum.sq.NIL)

Sometimes, a fold must be performed on a lower level predicate before the
final fold is possible, as in example 11, In such cases, the remainder of

the foldorder list is utilized.

d) Call to transform,
A call to the transform procedure giving as its argument the atom to be
transformed (the goal atom) in the format described in the next section.

If this call appears in a procedure:
q <- transform(...)

then the transformation may be run by the goal <-q .

e system symbolically executes the specified goal atom using the
program clauses supplied. At each step of the execution, trace information
s displayed: e.g. procedure call, disjunction, Jump, return, etc. and the
level number is included. The execution procedure itself is described in
the next section. Immediately prior to each extension of the proof tree,
i.e, when a call is about to be replaced by a body, the system prompts the
user for a command: either "continue" or "stop". A "continue" command
allows the execution to proceed; a "stop" command halts the execution of that

branch of the search tree.

Upon a "stop" command, the current derived procedure is displayed: the
head of this is the current substitution instance of the goal atom; its body
is the current goal clause. The system then tries to fold the body of this
procedure to obtain a recursion on the top level predicate as specified in
the foldorder 1list. For each predicate the various procedures are tried in
turn. If a fold is not possible with the top level predicate, lower level
predicates are tried. When a fold is eventually made, the system again

tries to fold with the top level predicate, and so on until this is successful.

P

56.

When the folding is complete, the folded procedure is displayed as one
of the solutions. The system then backtracks and pursues the next branch ‘in
the search tree to seek further solutions. When there are no further branches,

the transformation is complete and a méssage is displayed to this effect,

The solutions produced during transformation are the transformed
procedures. It only remains for the user to rearrange the try order and

rename variables.

3.2 Implementation of system

In this section we shall continue to use the syntax of IC-PROLOG, although
the system itself is written in Waterloo PROLOG. In the syntax of the latter,
all code is in upper case and variables are distinguished from constants by

being prefixed by "*",

Representatbtion of logic program components

A constant sym is represented by the term k(sym) . e.g. NIL becomes
k(NIL) ; 4 becomes k(&) .

A variable n, used on level 1, i.e, nl is represented by the term

v(n',1) , where n' is n written as a constant. e.g. x5 becomes v(X,5) .

A compound term func(term ...,termn) is represented by the term

1’

f(func',tern .termﬁ.NIL) , where func' is func written as a constant

L]
l. . s
and each term{ is the representation of termi. e.g8. cons(x5,NIL) becomes

f(CoNs,v(X,5).k(NIL) .NIL) .

An atom pred(term ..,termn) is represented by the term

1T
atom(pred',termi. ven .termﬂ.NIL) , Where pred' is pred written as a constant
and each term! is the representation of term;. e.g. fact(@,zz) becomes

atom(FACT,k(4).v(2,2).NIL) .

An equality terml = term2 is represented by the term termi @ termé ,

where each termi is the representation of termi.

A conjunction atoml& eee & atomn is represented by the term

atomi # ... # atomé # T , where each atomi is the representation of atomi.

57,

Representation of logic programs

The original Horn clause program must first be written in a modified
form such that there is only one clausé for each predicate. The body of
each such clause may be either a conjunction or a disjunction of conjunctions,
each of which may begin with a number of equalities to bind head variables to
terms for use in that conjunction. Note that a procedure head may only
contain variables and moreover these must not appear annotated in the body.

For example,

append (NIL,y,y) <~

append (cons (u,x),y,cons(u,z)) <~ append(x,y,z)
becomes

append(xx,y,zz) <-
NIL & y = 2z) |

cons(u,x) & zz = cons(u,z) & append(x,y,z))

i

(xx

i

(xx
If a head variable is annotated in the body, e.g.
front(n,x,z) <~ append(x,y,z) & length(x?,n)
then a different variable must be used in the head and equated with the
anmotated one:
front(n,xx,z) <- xx = x & append(x,y,2z) & length(x?,n)

The reason for this form of procedure is to allow a call to be replaced by a
body without the possibility of either a failure - the head variables can
"diways unify with terms in the call - or a coroutining Jjump. These may occur

later while matching terms in the equalities.

For use by the SCALP system, the program is represented by a set of

clause assertions, one for each predicate:
clause(predicate,level,head-variables,body)

predicate is the predicate part of the procedure head, written as a

constant.

level is a variable, to be bound to an integer when the procedure is

invoked.

head-variables is a list of the representations of the variables

constituting the arguments of the procedure head.

body is the representation of the procedure body: either a conjunction

or a disjunction of conjunctions. A body which is a disjunction

58.

conj1 I . l conjn is represented as (conji + .. F Conjﬁ) # T , where
each conji is the representation of conji. A conjunction conj containing

coroutining annotations is represented as cor(conj') # T
<

There are many examples of this representation to be found in the

appendix.

Data structures used

The principle data structure is a list of nodes, representing the search

tree, The first of these is the current node:
current-node.,other-nodes

The current node represents the current branch of the search tree; the others
are retained for backtracking purposes. In a deterministic computation only
one node would be required throughout. FEach node contains a level number

and a list of processes, the first of which is the current process:
node(level,current~process.other—processes)

The level of each node is either an <integer> or a term old(<integer>) ,
and the nodes are consecutively numbered starting at 0, e.g.
node(3,...).node(01d(2),...).node(1,...).node(0,...).NIL . The level of the

current node is the current level,.
Bach process may be either direct:
pr(id,dir(type,status,done~items,itemns))
or indirect:
pr(id,ind (parent-id))

There always exists one (direct) process whose id is MAIN, If there is no
coroutining this will be the only process; otherwise the id of every other
process will be a representation of a variable, e.g. v(X,1) . The parent-id
of an indirect process is the id of another (direct) process, The type of a
direct process is either CONSUMER or PRODUCER. The status of a process is
either PASSIVE or active(return-id) , where return-id is the id of another

process.

done-items and items are each a representation of a conjunction.
done~-items contains only atoms with primitive predicates. Each conjunct of
items (unless items is empty) is termed an item - not necessarily an atom -

the first of which is the current item:

o i

ooy

59.

current-item # other-items
The binding environment is represented by a set of assertions:

bind(level,variable,term)

indicating the level at which a variable is bound to a certain term,

Basic symbolic execution mechanism

We describe here the mechanism for symbolic execution in the absence
of coroutining. This is a slight modification of that used in Vasey's

system.

Initially there is Just one node, whose level is 0, containing one
process, whose id is MAIN and whose type and status are irrelevant; done-items
is empty; items contains just the goal atom (that which is to be executed) .
‘Thus the initial node list is

node(0,pr(MAIN,dir(X,X,T,goal-atom # T)).NIL).NIL

Assuming there is no coroutining, only one process exists in any node and

the conjunction of items in this process is executed left - right depth first.

We describe the mechanism as a repeated application of rules to the data

structure

node(current-level,
pr(id,dir(type,status,done-items,current-item # other-items))

.other-processes).other-nodes

Rule a) Current item is an atom with a primitive predicate.

Move the current item to the done-items conjunction, The node list becomes

node(current-level,
pr(id,dir(type,status,current-item # done~items,other-itens))

.other-processes).other-nodes

Rule b) Current item is an atom with a predicate for which a procedure
exists. Change current-level to old(current-level) in the current node.
Add a new node whose level is current-level + 1 and which is a copy of the
current node except that the current item is replaced by the body of the
corresponding procedure. At the same time, the procedure's head variables

become bound to the arguments of the current item, The node list becomes

P

60.

node(current-level + 1, .
pr(id,dir(type,status,done—items,new—items))
.other-processes) .

.node (old(current-level),
pr(id,dir(type,status,done-items,current-item # other-items))

.other-processes).other-nodes

where new-items denotes the body conjoined to other-items. The reason for
retaining the old node is to provide for possible partial backtracking in
connection with coroutining - this will be discussed later. In the absence

of coroutining, "o0ld" nodes will always be ignored.

Rule ¢) Current item is a disjunction, say altl + altz
Replace the current item by alt2 in the current node. Add a new node which
is a copy of the current node except that its level is incremented by 1 and

that the current item is replaced by altl:

node (current-level + 1,
pr(id,dir(type,status,done-items,new-itemsl))
.other-processes)

.node (current-level,
pr(id,dir(type,status,done-items,new-itens2))

.other-processes).other-nodes

where new-itemsl is altl conjoined to other-items and new-items2 is alt2

conjoined to other-items,

Rule 4) Current item is an equality, say terml @ termz .
Try to match terml and term2. If the match succeeds, any necessary bindings
are induced and the current item is simply removed. If however the match
fails, we must backtrack to the last branch point. This is done by deleting
the current node together with all subsequent nodes with an "old" level,

Any bindings made by the deleted nodes' levels are undone.

The remaining rule applies when the items conjunction is empty, i.e.
the node list is

node (current-level,
pr(id,dir(type,status,done-items,T))

.other—processes).other—nodes

gy

61.

Rule e) Items is empty.
i.e. have finished the MAIN process, This means that we have a solution -
an assertion - which consists of the goal atom with the current bindings

applied. Print this solution and then backtrack to try other branches.

Coroutining symbolic execution mechanisn

In section 1.3, we discussed how a coroutined execution could be regarded
in terms of processes, We shall extend the above rules in order to implement

this mechanism,

The MAIN process is permanently in existence, constructing the whole
proof tree. When a coroutining interaction is in effect, there are a number
of other processes, each developing a subtree of the proof tree. Each
process other than MAIN is uniquely identified by a variable: that which is
annotated in the atom at the root of the process's subtree. Such processes
first come into being when a procedure is invoked whose body contains

coroutining annotations. Our next rule caters for this situation.

Rule f) Current item is cor(conj) .

conj is a conjunction bearing annotations. Suppose that conj is

. Al(tll,...,tlml) & i & Aj(tjl,...,x?,...,tjmj) & .. &

nmn)

) & ... & A (L

n nl""’t

A (s e R "tkmk
We preprocess conj to remove the annotations and place each annotated atom
in a new process. Each annotated atom is replaced in conj by the terxrm
p(var) , where var is the annotated variable. For each annotated atom a
new direct process is created, whose id is the annotated variable. The
type of the new process is either CONSUMER or PRODUCER according to whether
the annotation was "?" or "A", while its status is PASSIVE. The done-items
of the new process is empty and the items conjunction contains Jjust the
annotated atom with its annotation removed. In the case of the above

example, the preprocessed conjunction is

170 v ihﬁﬂno#...#p@)#...#PU>#...#

atom(An,tnl. e .tnmn.NIL) #T

atom(Al,t

and the two new processes are

proees

62.

pr(x,dir(CONSUMER,PASSIVE,T,atom(Aj,tjl. e 'tjm NIL) # 7))
J

and

z

pr(y,dir(PRODUCER,PASSIVE,T,atom(Ak,tkl. NIL) # 7))

'tkmk
The preprocessed conjunction cor-conj then replaces the current item
and the new processes cor-procs are added to the list of processes in the

current node. The node 1list becomes

node(current-level,
pr(id,dir(type,status,done-itens,new-itemns))

.new-processes), other-nodes

where new-items is cor-conj conjoined to other-items, and new-processes is

cor-procs appended to other-processes.

During execution, indirect processes may be created: whenever a variable
for which a process exists is bound to a non-variable term, its process is
inherited by all variables (if any) in that term, Suppose y, which has a
direct process, is bound to the term f(xl,...,xn) . Then n indirect
processes are created (one for each variable in the term) :

pr(x, , ind(¥))

pr(x_,ind(y))

We can now explain how the coroutining interaction is effected. A
“jump or return is triggered whenever an annotated variable (i.e. one for
which a process exists) is bound to a non-variable, either directly or
indirectly. When any variable is bound to a non-variable, we see whether
there exists a process. (either direct or indirect) for the variable being
bound. We then conceptually set a flag indicating the direct process
concerned, if necessary after indirection via an indirect process, The

actual jump or return is performed by our next rule.

Rule g) If the control flag is set, identifying process dpr (regardless
of the current item) then continue execution until all equalities (if any)

are dealt with, then do the jump or return as follows,

Firstly, if the process dpr is an active consumer or a passive producer
- deduced from its type and status - then the last execution step is undone.

This is achieved by deleting the current node so that the last "old" node

63.
becomes current.

Next, if the type of dpr is PASSIVE, a Jjump must be performed to dpr.
This is done by changing the status of.dpr to active(cid) , where cid is the
id of the current process, and making dpr the current process (by placing it
at the head of the list of processes).

Alternatively, if the type of dpr is active(rid) a return must be
performed to the process whose id is rid. This is done by changing the
status of dpr to PASSIVE, and making the process identified by rid the current

one,

The next rule deals with the case of a subtree being entered in the

left - right depth first order, while being constructed by a separate process.

Rule h) Current item is p(pid) .
The process whose id is pid is removed from the process 1list and the
construction of its subtree is continued by the current process. This is
done by adding the done-items and items of the terminated process to those

of the current process.
Finally, our previous rule e) must be revised as follows.,

* Rule e') Items is empty.
i.e. have finished a process. If the id of the current process is MAIN,
we have a solution: print it and backtrack as before. Otherwise, return

from the current process by the method given in rule g).

Folding

As mentioned in section 3.1, the user is prompted for input prior to
every application of rule a) or b). If the command fstopﬁ is given, the
system flattens the contents of all processes of the current node into a
single conjunction and attempts to fold this, repeatedly if necessary.

We have already stated the order in which the procedures are tried in the

search for a fold. For each procedure, a fold is sought as follows.

Firstly, a new instance of the procedure body is taken, using a level
number greater than any previously used; this ensures that the variables in
the body are distinct from those in the conjunction. The atoms in the

procedure body are matched against the first atoms of all permutations of

the current conjunction until a match is found. Then the equalities at
the beginning of the procedure body are evaluated (this will always succeed)

and the matched part of the conjunction is replaced by the procedure head.

For example, consider the fully unfolded conjunction of example 11:

delete(v ,x2 y3) & delete(v u y3) & perm(y 24) & v° < VLF &
ord(vq.zq)
To fold this with perm, we use the procedure
perm(xxé,zzé) <~ xx6 = u6.x6 & 220 = v6.26 & delete(vé,ué.xé,yé) &
pexn(y®,2°)
The atoms
delete(vé,ué.xé,yé) & perm(yé,zé)
match with the first portion of the permuted conjunction
delete(vq,uz.yB, 4) & perm(yq,zq) & delete(vz,xz,yB) & v2 < v4 &

ord(vu.zq)

inducing the bindings vé/vq, u6/u2, X6/y3, yé/yq, 26/24. When the
equalities are evaluated, we get the bindings xxé/uz.y3 and Zzé/vq.zq.
Replacing the first two atoms of the conjunction by the procedure head, we

have

- perm(u yB,v .z) & delete(v x* y3) & v < v & ord(v4 zq)

as required.

The need for the occur check in folding has been noted in section 2.6.
Our example above illustrates this. If the occur check were not used, it
-would have been possible to fold the original conjunction with the sort

Procedure:

perm(yq,zq) & ord(vq.zq) &

would be replaced by

sort(yu,zq) & o..
inducing the self~-referential binding zq/vq.zq.

Also during folding, while matching the conjunction against a procedure
body, no variable of the conjunction may be bound, for the following reason.
Let GO’Gl”"
transformation; then for each i, Gi is implied by Gi+1' Specifically, if

denote the bodies of the successive goal clauses in the

we are folding Gn to Gn+1 then Gn+1 must imply Gn' However, if this fold

gy

65.

were to bind any variables of Gn, then Gn+1 would only imply some substitution

instance of Gn, not Gn itself, In the present example, it would have been
possible - were this check not performed - to fold the permuted conjunction
delete(vz,xz,yB) & perm(yq,zq) & delete(vq,uz.yB,yu) & v < Ve

ord(vq.zq)
with the perm procedure, giving
perm(ué.xé,vz.zq) & e
and binding X2/u6.X6 and y3/y4 .

The above fold would not have been logically valid for another reason:
the rule stated in section 2.3. This rule forbids the fold because the
existentially quantified y6 in the perm procedure matches with y3 in the first
atom, which also appears in the third atom. This rule is not actually

checked by the system; neither is the requirement that all procedures for a

predicate treat disjoint tuples of arguments.

3.3 Possible enhancements to system

Our existing system does not provide for the application of laws or
functionality, as described in section 2.3. A simple way to provide these
wonld be to allow the user to enter a new conjunction - to replace the fully
unfolded one - immediately prior to folding. The user would then be

responsible for the correctness of the rearranged conjunction.

A more automatic method for applying laws would be for the user to supply
a set of equivalences in the form that we have considered. The system would
automatically search the unfolded conjunction, in a similar manner to that
employed in folding, for opportunities to apply the laws. A problem with
this method is the overhead that would be incurred by the search. Also,
there would often be a large number of possible rearrangements, most of which

would not result in the desired fold.

It should be easier to implement a method for automatically applying
functionality simplification. The user would enumerate the circumstances in
which each relation is a function in a similar manner to the IC-PROLOG
directive $FUNCTION: $FUNCTION(p,a1,...,an) states that p is a function if
its alth and ,.. and anth arguments are all given, The system would search
the unfolded conjunction for pairs of atoms having the same predicate. It

would then note all argument positions in which the atoms have identical

66.

arguments and check whether these are subsumed by those in any $FUNCTION

specification for the predicate.

3.4 Adding parallelism to system

In section 1.4 we discussed a control strategy embodying both coroutining
and parallelism, We now suggest a possible implementation of this scheme
within the framework of the SCALP system, The difference lises in the
symbolic execution phase; folding is performed in the same way. We shall

need a modified data structure and execution mechanism,

Data structures used

Since backtracking works as before, we still have a list of nodes, of
which the first is the current node. The contents of each node are different,

however:
node(level,current-process~set,suspension-record-set)
The level of a node has the same role as previously.

The current process set fulfils the purpose described in section 1.4,
i.e.- it contains the processes being executed concurrently, It is a list of

~prveesses, the first of which is the current process:
current-process, other-processes

The suspension record set is a list of suspension records, each of which

may be either direct:

susp(var,dir(type, suspension-type,suspended-processes))
or indirect:

susp(var,ind(parent-var))

The suspension record set in a node will be empty if there is no coroutining;
otherwise it will contain one direct suspension record for each annotated
variable. The annotated variable occupies the var field 6f the corresponding
suspension record. Indirect suspension records have the same purpose as
indirect processes in the original implementation: one is created for each

variable in a term bound to a variable for which a suspension record exists.

The type of a direct suspension record is either CONSUMER or PRODUCER,

as is the suspension-type. suspended-processes is a list of all processes

67.

which are coroutine suspended on the variable in the var field of the
suspension record. All processes suspended thus will be of the same type,

"which is indicated by the suspension-type of the record,
Each process is now of the form
pr(id,origin,ancestor-vars,done-items,items)

The id of a process is no longer a variable but is either MAIN or some unique

identifier. The origin of a process is either
parallel(parent-id)

where parent-id is the id of another process, or
coroutined(var)

where var is the representation of a variable. ancestor-vars is a 1list of

representations of variables; done-items and items are the same as previously.

Parallel symbolic execution mechanism

Initially there is one node, whose level is O, Its current process set
contains just one process, whose id is MAIN and whose origin is irrelevant;
ancestor-vars and done-items are empty; items contains Jjust the goal atom,

The suspension record set is empty. The initial node 1ist is therefore
node (0, pr(MAIN,X,NIL,T,goal-atom # T).NIL,NIL).NIL

If there is no coroutining, the suspension record set will remain empty.
In the absence of parallelism, there will never be more than one process in

the current process set.

We shall again explain the mechanism as a number of steps, each applying

one of several rules tp the data structure

node (current-level,
pr(id,origin,ancestor-vars,done-items,
current-item # other-items)
.other-processes,

suspension-record-set).other-nodes

according to the current item. Note that between steps of the execution,
the current process is cycled to the tail end of the current process set.

This has the effect of timeslicing between the processes.

gy

68.

Rule a") Current item is an atom with a primitive predicate.
This rule is analogous to the old rule é), i.e. move the current item to

done-items.

Rule b") Current item is an atom with a predicate for which a procedure
exists. Firstly, check that any arguments bf the atom which are suffixed by
the "!" annotation are bound to a non-variable term. If so, apply the
equivalent of rule b), otherwise do nothing (i.e. the current process is

temporarily suspended).

Rule c¢") Current item is a disjunction.

Analogous to the old rule c).

Rule d") Current item is an equality.
Analogous to the old rule d).

Rule f") Current item is cor(conj) .
Here, as in the old rule f), coroutining is introduced. Suppose again that
conj is the annotated conjunction

m.
J J

nl,...,tnm)
n

Al(tll,...,tlml) & .. &Aj(tjl,...,x?,...,t.) & .. &

A (t)& ... & A (t

kl""’yT""’tkmk
We preprocess conj in a similar manner except that this time each new process
created has a new id and each annotated atom is replaced in conj by the term
p(id) . The items conjunction of the new process contains Jjust the annotated
atom with its annotation removed. The origin of the new process is
coroutined(v) where v is the annotated variable; the ancestor-vars list is
that of the current process with v added, Finally, the new process is

placed in a new suspension record whose var is v, and whose type and

suspension-type depend upon whether the annotation is "?" or "4",

In our example, the preprocessed conjunction is

atom(Al,'tll. .tlml.NIL) # ... #p(ID1) # ... # p(ID2) #

e atom(An,tnl. N - NIL) #7
n

and the new suspension records are

ey

69.

susp(x,dir(CONSUMER,CONSUMER,
pr(IDl,coroutined(x),x.anoestor-vars,T,
atom(Aj,tjl. ces .vjmj.NIL) # T).NIL))

and

susp(y,dir(PRODUGER,PRODUCER,
pr(IDZ,coroutined(y),y.ancestor—vars,T,
amM%ﬂm.“.imkmm#TLMD)
The preprocessed conjunction pro-conj then replaces the current item
and the new suspension records pro-susps are added to the suspension record

set in the current node. The node list becomes

node(current-level,
pr(id,origin,ancestor—vars,done-items,new—items)
.other-processes, ’

new—suspension—record—set).other—nodes

where new-items is pro—conj<conjoined to other-items and new-suspension-

record-set is pro-susps appended to suspension—record—set.

‘Rule h") Current item is p(pid) .
Analogous to the old rule h).

Rule i") Current item is (conjy /] ol conjn) .
Each conj:.L is a conjunction. This rule introduces parallelism as follows.
The current item is replaced in the current process by the term
par(idl. oas .idn.NIL) where the idis are new identifiers. Also, n new

processes are added to the current process set:

pr(idl,parallel(id),ancestor—vars,T,conjl)

pr(idn,parallel(id),ancestor—vars,T,conjn)

In this way, a new parallel process is created for each conjunction; the

parent-id of each is the id of the original process.

Rule j") Current item is par(idl. e .idn.NIL) .
This means that the current process is temporarily suspended, waiting for

gubsidiary processes to finish. Therefore do nothing.

TS

70.

Rule g") A variable, for which there exists a suspension record, is
bound to a non-variable term. This is the trigger for a coroutining jump
or return. (Indirect suspension records are treated similarly to the

<

previous indirect processes.)

Suppose that the variable that has just been bound is v and the
suspension record for v is sr. As we saw in section 1.4, we must first
discover whether the current process is a consumer or a producer of wv.

This depends upon whether v was annotated by "ot or "A" and whether the
current process is descended from the call in which v is annotated. The
former question is answered by checking the type of sr; the latter by
searching for v in ancestor-vars of the current process: if v is present then
this process is descended from the annotated call. The action to be taken
depends upon whether producers or consumers are currently suspended on v,

as indicated by the suspension-type of sr.

Suppose that the current process is a consumer of v, i.e. type of sr is
CONSUMER and v is in ancestor-vars or type of sr is PRODUCER and v is not in
ancestor-vars. Firstly, the last execution step is undone, then the current
process is saved in the suspended-processes list of sr. If the suspension-
type of sr is PRODUCER then the producers which were suspended there must be
added to the current process set and the suspension-type changed to CONSUMER.

~If instead the current process is a producer of v, i.e. type of sr is
“LlGbUcdR and v is in ancestor-vars or type of sr is CONSUMER and v is not in
ancestor-vars: The current process is saved in the suspended-processes list
of sr. If the suspension-type of sr is CONSUMER then the consumers which
were suspended there must be added to the current process set and the

suspension~-type changed to PRODUCER.
Our final rule deals with the event of finishing a process.

Rule e") Items is empty.
i.e. have finished a process. If the id of the current process is MAIN,
we have a solution: print it and backtrack as before. Otherwise:-
If the origin of the current process is coroutined(var) ,‘then resume any
processes suspended on var, delete the suspension record for var and remove
the terminated process.
If the origin of the current process is parallel(parent-id) , then search
the current process set for the process whose id is parent-id. The current

item - par(l) - of that process is replaced by par(l') where 1' is the

list 1 omitting the id of the current process; if 1' is now empty then the

par(l') item is removed. Finally, remove the terminated process.

71.

72.

CONCLUSION

Control ammotations provide a convenient means of improving the behaviour
of a logic program without detracting from ifs clarity; given a sufficiently
complex scheme of annotations we could write logic programs consisting solely
of a specification, heavily annotated. However, as Hogger [14] points out,
if the annotations were to become excessively intricate then programs would

be difficult to write and to understand.

This last problem would be less serious if annotated programs could be
compiled, shifting the complexity from the annotations into the logic. The
original program - with simple logic - would serve best for declarative
purposes while the compiled version - with few, if any, annotations - would be

more amenable to analysis from an operational standpoint.

We have considered the simple scheme of annotations of IC-PROLOG and
have seen that programs annotated in this way can often (though not always)
be compiled, given a certain amount of user intervention. It is probable
that other annotations that could be devised may lend themselves to compilation
in a similar way. In attempting to compile annotated programs, we are using
the;gnnotations not for their intended purpose of controlling execution but
to:control transformation. Regarded in this way, the annotations resemble
the "metaprogram" of Feather; however, the latter contains all of the
information required to control the transformation, since it 1s designed for

“this purpose.

The principal advantage of compilation is of course the increased speed.
In testing, on IC-PROLOG, each example appearing in this report, we have
noted a typical 50 percent reduction in execution time for the compiled

version over the original annotated program.

+ Py

i
1
4
.
i
|
;
!
4
.
‘

REFERENCES

Burstall R.M. and Darlington, dJ.

Dutober e

A transformation system for developing recursive programns.

JACM 24(1), 1977.

¢lark, K.L.
The synthesis and verification of logic programs.

Research report, CCD, Imperial College, 1977.

Clark, K.L.

Predicate logic as & computaiional formalism.

Research monograph, Imperial College, 1979.

Clark, K.L. and Darlington, J.

Algorithm classification through synthesis.
Computer Journal 23(1), 1980.

Clark, K.L. and McCabe, T.G.
10-PROLOG reference manual.

Research report, ccp, Imperial college, 1980 (in preparation).

Clark, K.L. and Sickel, S.

Predicate logic: & calculus for deriving programs.

Proc. LJCAI, 1977.

Darliggton, J. and Waldinger, R.

Case studies 1n program transformation and synthesis.

SRI International, 1978.

Dijkstra, B.W.
A discipline of programming.
prentice-Hall, 1976.

Feather, M.5.
ngzAP" prograi transformation system primexr and users’ manual.

Research report gy, Dept. AL Bdinburgh University, 1978.

oy

73,

10.

11,

12.

13.

14,

15,

Feather, M.S.

A system for program transformation.

Transformation workshop, Harvarg University, 1979,

Feather, M.S.

Design of a text formatter.

Transformation workshop, Harvard University, 1979.

Hoare, C.A.R.

Communicating sequential processes.,
CACM 21(8), 1978.

Hogger, C.J.

Derivation of logic programs.
PhD thesis, Imperial College, 1978.

Hogger, C.J.

Logic representation of a concurrent algorithm.

Research report, Imperial College, 1980.

Kowalski, R.A.

. Algorithm = logic + control.

. FH{) .

17.

18.

19.

CACM 22(7), 1979,

Kowalski, R.A.
Logic for problem solving.
North Holland, 1979.

Manna, 7, and Waldinger, R.

Knowledge and reasoning in program synthesis.
AI Journal 6(2), 1975.

Manna, Z. and Waldinger, R.

The automatic synthesis of systems of recursive programs,
Proc. IJCAT, 1977.

Schwarz, J.
Using annotations to make recursion equations behave.

Research report 43, Dept. AI, Edinburgh University, 1977.

74,

ey

20.

21.

22.

75.

Vasey, P.E.
A logic-in-logic interpreter.

MSc thesis, CCD, Imperial College, 1979.

Warren, D.

Implementing PROLOG - compiling predicate logic programs.
Research reports 39, 40, Dept. AI, Edinburgh University, 1977.

Warren, D., Pereira, L. and Pereira, F.

PROLOG -~ the language and its implementation compared with Lisp.
Proc. SIGART/SIGPLAN Language Conference, Rochester University, 1977.

Jpter

